13,818 research outputs found

    Radix-2 x 2 x 2 algorithm for the 3-D discrete hartley transform

    Get PDF
    The discrete Hartley transform (DHT) has proved to be a valuable tool in digital signal/image processing and communications and has also attracted research interests in many multidimensional applications. Although many fast algorithms have been developed for the calculation of one- and two-dimensional (1-D and 2-D) DHT, the development of multidimensional algorithms in three and more dimensions is still unexplored and has not been given similar attention; hence, the multidimensional Hartley transform is usually calculated through the row-column approach. However, proper multidimensional algorithms can be more efficient than the row-column method and need to be developed. Therefore, it is the aim of this paper to introduce the concept and derivation of the three-dimensional (3-D) radix-2 2X 2X algorithm for fast calculation of the 3-D discrete Hartley transform. The proposed algorithm is based on the principles of the divide-and-conquer approach applied directly in 3-D. It has a simple butterfly structure and has been found to offer significant savings in arithmetic operations compared with the row-column approach based on similar algorithms

    Tensor Numerical Methods in Quantum Chemistry: from Hartree-Fock Energy to Excited States

    Get PDF
    We resume the recent successes of the grid-based tensor numerical methods and discuss their prospects in real-space electronic structure calculations. These methods, based on the low-rank representation of the multidimensional functions and integral operators, led to entirely grid-based tensor-structured 3D Hartree-Fock eigenvalue solver. It benefits from tensor calculation of the core Hamiltonian and two-electron integrals (TEI) in O(nlogn)O(n\log n) complexity using the rank-structured approximation of basis functions, electron densities and convolution integral operators all represented on 3D n×n×nn\times n\times n Cartesian grids. The algorithm for calculating TEI tensor in a form of the Cholesky decomposition is based on multiple factorizations using algebraic 1D ``density fitting`` scheme. The basis functions are not restricted to separable Gaussians, since the analytical integration is substituted by high-precision tensor-structured numerical quadratures. The tensor approaches to post-Hartree-Fock calculations for the MP2 energy correction and for the Bethe-Salpeter excited states, based on using low-rank factorizations and the reduced basis method, were recently introduced. Another direction is related to the recent attempts to develop a tensor-based Hartree-Fock numerical scheme for finite lattice-structured systems, where one of the numerical challenges is the summation of electrostatic potentials of a large number of nuclei. The 3D grid-based tensor method for calculation of a potential sum on a L×L×LL\times L\times L lattice manifests the linear in LL computational work, O(L)O(L), instead of the usual O(L3logL)O(L^3 \log L) scaling by the Ewald-type approaches

    Radix-2<sup>2</sup> Algorithm for the Odd New Mersenne Number Transform (ONMNT)

    Get PDF
    \ua9 2023 by the authors. This paper introduces a new derivation of the radix- (Formula presented.) fast algorithm for the forward odd new Mersenne number transform (ONMNT) and the inverse odd new Mersenne number transform (IONMNT). This involves introducing new equations and functions in finite fields, bringing particular challenges unlike those in other fields. The radix- (Formula presented.) algorithm combines the benefits of the reduced number of operations of the radix-4 algorithm and the simple butterfly structure of the radix-2 algorithm, making it suitable for various applications such as lightweight ciphers, authenticated encryption, hash functions, signal processing, and convolution calculations. The multidimensional linear index mapping technique is the conventional method used to derive the radix- (Formula presented.) algorithm. However, this method does not provide clear insights into the underlying structure and flexibility of the radix- (Formula presented.) approach. This paper addresses this limitation and proposes a derivation based on bit-unscrambling techniques, which reverse the ordering of the output sequence, resulting in efficient calculations with fewer operations. Butterfly and signal flow diagrams are also presented to illustrate the structure of the fast algorithm for both ONMNT and IONMNT. The proposed method should pave the way for efficient and flexible implementation of ONMNT and IONMNT in applications such as lightweight ciphers and signal processing. The algorithm has been implemented in C and is validated with an example

    For the Jubilee of Vladimir Mikhailovich Chernov

    Get PDF
    On April 25, 2019, Vladimir Chernov celebrated his 70th birthday, Doctor of Physics and Mathematics, Chief Researcher at the Laboratory of Mathematical Methods of Image Processing of the Image Processing Systems Institute of the Russian Academy of Sciences (IPSI RAS), a branch of the Federal Science Research Center "Crystallography and Photonics RAS and part-Time Professor at the Department of Geoinformatics and Information Security of the Samara National Research University named after academician S.P. Korolev (Samara University). The article briefly describes the scientific and pedagogical achievements of the hero of the day. © Published under licence by IOP Publishing Ltd
    corecore