3,331 research outputs found

    A simulated annealing based genetic local search algorithm for multi-objective multicast routing problems

    Get PDF
    This paper presents a new hybrid evolutionary algorithm to solve multi-objective multicast routing problems in telecommunication networks. The algorithm combines simulated annealing based strategies and a genetic local search, aiming at a more flexible and effective exploration and exploitation in the search space of the complex problem to find more non-dominated solutions in the Pareto Front. Due to the complex structure of the multicast tree, crossover and mutation operators have been specifically devised concerning the features and constraints in the problem. A new adaptive mutation probability based on simulated annealing is proposed in the hybrid algorithm to adaptively adjust the mutation rate according to the fitness of the new solution against the average quality of the current population during the evolution procedure. Two simulated annealing based search direction tuning strategies are applied to improve the efficiency and effectiveness of the hybrid evolutionary algorithm. Simulations have been carried out on some benchmark multi-objective multicast routing instances and a large amount of random networks with five real world objectives including cost, delay, link utilisations, average delay and delay variation in telecommunication networks. Experimental results demonstrate that both the simulated annealing based strategies and the genetic local search within the proposed multi-objective algorithm, compared with other multi-objective evolutionary algorithms, can efficiently identify high quality non-dominated solution set for multi-objective multicast routing problems and outperform other conventional multi-objective evolutionary algorithms in the literature

    On application of least-delay variation problem in ethernet networks using SDN concept

    Get PDF
    The goal of this paper is to present an application idea of SDN in Smart Grids, particularly, in the area of L2 multicast as defined by IEC 61850-9-2. Authors propose an Integer Linear Formulation (ILP) dealing with a Least-Delay-Variation multicast forwarding problem that has a potential to utilize Ethernet networks in a new way. The proposed ILP formulation is numerically evaluated on random graph topologies and results are compared to a shortest path tree approach that is traditionally a product of Spanning Tree Protocols. Results confirm the correctness of the ILP formulation and illustrate dependency of a solution quality on the selected graph models, especially, in a case of scale-free topologies

    Analysis of Performance of Dynamic Multicast Routing Algorithms

    Full text link
    In this paper, three new dynamic multicast routing algorithms based on the greedy tree technique are proposed; Source Optimised Tree, Topology Based Tree and Minimum Diameter Tree. A simulation analysis is presented showing various performance aspects of the algorithms, in which a comparison is made with the greedy and core based tree techniques. The effects of the tree source location on dynamic membership change are also examined. The simulations demonstrate that the Source Optimised Tree algorithm achieves a significant improvement in terms of delay and link usage when compared to the Core Based Tree, and greedy algorithm

    Minimum power multicasting with delay bound constraints in Ad Hoc wireless networks

    Get PDF
    In this paper, we design a new heuristic for an important extension of the minimum power multicasting problem in ad hoc wireless networks. Assuming that each transmission takes a fixed amount of time, we impose constraints on the number of hops allowed to reach the destination nodes in the multicasting application. This setting would be applicable in time critical or real time applications, and the relative importance of the nodes may be indicated by these delay bounds. We design a filtered beam search procedure for solving this problem. The performance of our algorithm is demonstrated on numerous test cases by benchmarking it against an optimal algorithm in small problem instances, and against a modified version of the well-known Broadcast Incremental Power (BIP) algorithm 20 for relatively large problems

    A genetic-inspired joint multicast routing and channel assignment algorithm in wireless mesh networks

    Get PDF
    Copyright @ 2008 IEEEThis paper proposes a genetic algorithm (GA) based optimization approach to search a minimum-interference multicast tree which satis¯es the end-to-end delay constraint and optimizes the usage of the scarce radio network resource in wireless mesh networks. The path-oriented en- coding method is used and each chromosome is represented by a tree data structure (i.e., a set of paths). Since we expect the multicast trees on which the minimum-interference channel assignment can be produced, a fitness function that returns the total channel conflict is devised. Crossover and mutation are well designed to adapt to the tree structure. A simple yet effective channel assignment algorithm is proposed to reduce the channel conflict. Simulation results show that the proposed GA based multicast algorithm achieves better performance in terms of both the total channel conflict and the tree cost than that of a well known algorithm

    Joint QoS multicast routing and channel assignment in multiradio multichannel wireless mesh networks using intelligent computational methods

    Get PDF
    Copyright @ 2010 Elsevier B.V. All rights reserved.In this paper, the quality of service multicast routing and channel assignment (QoS-MRCA) problem is investigated. It is proved to be a NP-hard problem. Previous work separates the multicast tree construction from the channel assignment. Therefore they bear severe drawback, that is, channel assignment cannot work well with the determined multicast tree. In this paper, we integrate them together and solve it by intelligent computational methods. First, we develop a unified framework which consists of the problem formulation, the solution representation, the fitness function, and the channel assignment algorithm. Then, we propose three separate algorithms based on three representative intelligent computational methods (i.e., genetic algorithm, simulated annealing, and tabu search). These three algorithms aim to search minimum-interference multicast trees which also satisfy the end-to-end delay constraint and optimize the usage of the scarce radio network resource in wireless mesh networks. To achieve this goal, the optimization techniques based on state of the art genetic algorithm and the techniques to control the annealing process and the tabu search procedure are well developed separately. Simulation results show that the proposed three intelligent computational methods based multicast algorithms all achieve better performance in terms of both the total channel conflict and the tree cost than those comparative references.This work was supported by the Engineering and Physical Sciences Research Council (EPSRC) of UK under Grant EP/E060722/1
    corecore