8,852 research outputs found

    A flexible integrative approach based on random forest improves prediction of transcription factor binding sites

    Get PDF
    Transcription factor binding sites (TFBSs) are DNA sequences of 6-15 base pairs. Interaction of these TFBSs with transcription factors (TFs) is largely responsible for most spatiotemporal gene expression patterns. Here, we evaluate to what extent sequence-based prediction of TFBSs can be improved by taking into account the positional dependencies of nucleotides (NPDs) and the nucleotide sequence-dependent structure of DNA. We make use of the random forest algorithm to flexibly exploit both types of information. Results in this study show that both the structural method and the NPD method can be valuable for the prediction of TFBSs. Moreover, their predictive values seem to be complementary, even to the widely used position weight matrix (PWM) method. This led us to combine all three methods. Results obtained for five eukaryotic TFs with different DNA-binding domains show that our method improves classification accuracy for all five eukaryotic TFs compared with other approaches. Additionally, we contrast the results of seven smaller prokaryotic sets with high-quality data and show that with the use of high-quality data we can significantly improve prediction performance. Models developed in this study can be of great use for gaining insight into the mechanisms of TF binding

    Synthetic biology—putting engineering into biology

    Get PDF
    Synthetic biology is interpreted as the engineering-driven building of increasingly complex biological entities for novel applications. Encouraged by progress in the design of artificial gene networks, de novo DNA synthesis and protein engineering, we review the case for this emerging discipline. Key aspects of an engineering approach are purpose-orientation, deep insight into the underlying scientific principles, a hierarchy of abstraction including suitable interfaces between and within the levels of the hierarchy, standardization and the separation of design and fabrication. Synthetic biology investigates possibilities to implement these requirements into the process of engineering biological systems. This is illustrated on the DNA level by the implementation of engineering-inspired artificial operations such as toggle switching, oscillating or production of spatial patterns. On the protein level, the functionally self-contained domain structure of a number of proteins suggests possibilities for essentially Lego-like recombination which can be exploited for reprogramming DNA binding domain specificities or signaling pathways. Alternatively, computational design emerges to rationally reprogram enzyme function. Finally, the increasing facility of de novo DNA synthesis—synthetic biology’s system fabrication process—supplies the possibility to implement novel designs for ever more complex systems. Some of these elements have merged to realize the first tangible synthetic biology applications in the area of manufacturing of pharmaceutical compounds.

    Human Promoter Prediction Using DNA Numerical Representation

    Get PDF
    With the emergence of genomic signal processing, numerical representation techniques for DNA alphabet set {A, G, C, T} play a key role in applying digital signal processing and machine learning techniques for processing and analysis of DNA sequences. The choice of the numerical representation of a DNA sequence affects how well the biological properties can be reflected in the numerical domain for the detection and identification of the characteristics of special regions of interest within the DNA sequence. This dissertation presents a comprehensive study of various DNA numerical and graphical representation methods and their applications in processing and analyzing long DNA sequences. Discussions on the relative merits and demerits of the various methods, experimental results and possible future developments have also been included. Another area of the research focus is on promoter prediction in human (Homo Sapiens) DNA sequences with neural network based multi classifier system using DNA numerical representation methods. In spite of the recent development of several computational methods for human promoter prediction, there is a need for performance improvement. In particular, the high false positive rate of the feature-based approaches decreases the prediction reliability and leads to erroneous results in gene annotation.To improve the prediction accuracy and reliability, DigiPromPred a numerical representation based promoter prediction system is proposed to characterize DNA alphabets in different regions of a DNA sequence.The DigiPromPred system is found to be able to predict promoters with a sensitivity of 90.8% while reducing false prediction rate for non-promoter sequences with a specificity of 90.4%. The comparative study with state-of-the-art promoter prediction systems for human chromosome 22 shows that our proposed system maintains a good balance between prediction accuracy and reliability. To reduce the system architecture and computational complexity compared to the existing system, a simple feed forward neural network classifier known as SDigiPromPred is proposed. The SDigiPromPred system is found to be able to predict promoters with a sensitivity of 87%, 87%, 99% while reducing false prediction rate for non-promoter sequences with a specificity of 92%, 94%, 99% for Human, Drosophila, and Arabidopsis sequences respectively with reconfigurable capability compared to existing system

    Performance assessment of promoter predictions on ENCODE regions in the EGASP experiment

    Get PDF
    BACKGROUND: This study analyzes the predictions of a number of promoter predictors on the ENCODE regions of the human genome as part of the ENCODE Genome Annotation Assessment Project (EGASP). The systems analyzed operate on various principles and we assessed the effectiveness of different conceptual strategies used to correlate produced promoter predictions with the manually annotated 5' gene ends. RESULTS: The predictions were assessed relative to the manual HAVANA annotation of the 5' gene ends. These 5' gene ends were used as the estimated reference transcription start sites. With the maximum allowed distance for predictions of 1,000 nucleotides from the reference transcription start sites, the sensitivity of predictors was in the range 32% to 56%, while the positive predictive value was in the range 79% to 93%. The average distance mismatch of predictions from the reference transcription start sites was in the range 259 to 305 nucleotides. At the same time, using transcription start site estimates from DBTSS and H-Invitational databases as promoter predictions, we obtained a sensitivity of 58%, a positive predictive value of 92%, and an average distance from the annotated transcription start sites of 117 nucleotides. In this experiment, the best performing promoter predictors were those that combined promoter prediction with gene prediction. The main reason for this is the reduced promoter search space that resulted in smaller numbers of false positive predictions. CONCLUSION: The main finding, now supported by comprehensive data, is that the accuracy of human promoter predictors for high-throughput annotation purposes can be significantly improved if promoter prediction is combined with gene prediction. Based on the lessons learned in this experiment, we propose a framework for the preparation of the next similar promoter prediction assessment

    ARGO: a web system for the detection of degenerate motifs and large-scale recognition of eukaryotic promoters

    Get PDF
    Reliable recognition of the promoters in eukaryotic genomes remains an open issue. This is largely owing to the poor understanding of the features of the structural–functional organization of the eukaryotic promoters essential for their function and recognition. However, it was demonstrated that detection of ensembles of regulatory signals characteristic of specific promoter groups increases the accuracy of promoter recognition and prediction of specific expression features of the queried genes. The ARGO_Motifs package was developed for the detection of sets of region-specific degenerate oligonucleotide motifs in the regulatory regions of the eukaryotic genes. The ARGO_Viewer package was developed for the recognition of tissue-specific gene promoters based on the presence and distribution of oligonucleotide motifs obtained by the ARGO_Motifs program. Analysis and recognition of tissue-specific promoters in five gene samples demonstrated high quality of promoter recognition. The public version of the ARGO system is available at and

    Statistical extraction of Drosophila cis-regulatory modules using exhaustive assessment of local word frequency

    Get PDF
    BACKGROUND: Transcription regulatory regions in higher eukaryotes are often represented by cis-regulatory modules (CRM) and are responsible for the formation of specific spatial and temporal gene expression patterns. These extended, ~1 KB, regions are found far from coding sequences and cannot be extracted from genome on the basis of their relative position to the coding regions. RESULTS: To explore the feasibility of CRM extraction from a genome, we generated an original training set, containing annotated sequence data for most of the known developmental CRMs from Drosophila. Based on this set of experimental data, we developed a strategy for statistical extraction of cis-regulatory modules from the genome, using exhaustive analysis of local word frequency (LWF). To assess the performance of our analysis, we measured the correlation between predictions generated by the LWF algorithm and the distribution of conserved non-coding regions in a number of Drosophila developmental genes. CONCLUSIONS: In most of the cases tested, we observed high correlation (up to 0.6–0.8, measured on the entire gene locus) between the two independent techniques. We discuss computational strategies available for extraction of Drosophila CRMs and possible extensions of these methods

    Operator Sequence Alters Gene Expression Independently of Transcription Factor Occupancy in Bacteria

    Get PDF
    A canonical quantitative view of transcriptional regulation holds that the only role of operator sequence is to set the probability of transcription factor binding, with operator occupancy determining the level of gene expression. In this work, we test this idea by characterizing repression in vivo and the binding of RNA polymerase in vitro in experiments where operators of various sequences were placed either upstream or downstream from the promoter in Escherichia coli. Surprisingly, we find that operators with a weaker binding affinity can yield higher repression levels than stronger operators. Repressor bound to upstream operators modulates promoter escape, and the magnitude of this modulation is not correlated with the repressor-operator binding affinity. This suggests that operator sequences may modulate transcription by altering the nature of the interaction of the bound transcription factor with the transcriptional machinery, implying a new layer of sequence dependence that must be confronted in the quantitative understanding of gene expression

    Multi-site rate control analysis identifies ribosomal scanning as the sole high-capacity/low-flux-control step in mRNA translation

    Get PDF
    Control of complex intracellular pathways such as protein synthesis is critical to organism survival, but is poorly understood. Translation of a reading frame in eukaryotic mRNA is preceded by a scanning process in which a subset of translation factors helps guide ribosomes to the start codon. Here, we perform comparative analysis of the control status of this scanning step that sits between recruitment of the small ribosomal subunit to the m7GpppG‐capped 5′end of mRNA and of the control exerted by downstream phases of polypeptide initiation, elongation and termination. We have utilized a detailed predictive model as guidance for designing quantitative experimental interrogation of control in the yeast translation initiation pathway. We have built a synthetic orthogonal copper‐responsive regulatory promoter (PCuR3) that is used here together with the tet07 regulatory system in a novel dual‐site in vivo rate control analysis strategy. Combining this two‐site strategy with calibrated mass spectrometry to determine translation factor abundance values, we have tested model‐based predictions of rate control properties of the in vivo system. We conclude from the results that the components of the translation machinery that promote scanning collectively function as a low‐flux‐control system with a capacity to transfer ribosomes into the core process of polypeptide production that exceeds the respective capacities of the steps of polypeptide initiation, elongation and termination. In contrast, the step immediately prior to scanning, that is, ribosome recruitment via the mRNA 5′ cap‐binding complex, is a high‐flux‐control step

    Learning the Regulatory Code of Gene Expression

    Get PDF
    Data-driven machine learning is the method of choice for predicting molecular phenotypes from nucleotide sequence, modeling gene expression events including protein-DNA binding, chromatin states as well as mRNA and protein levels. Deep neural networks automatically learn informative sequence representations and interpreting them enables us to improve our understanding of the regulatory code governing gene expression. Here, we review the latest developments that apply shallow or deep learning to quantify molecular phenotypes and decode the cis-regulatory grammar from prokaryotic and eukaryotic sequencing data. Our approach is to build from the ground up, first focusing on the initiating protein-DNA interactions, then specific coding and non-coding regions, and finally on advances that combine multiple parts of the gene and mRNA regulatory structures, achieving unprecedented performance. We thus provide a quantitative view of gene expression regulation from nucleotide sequence, concluding with an information-centric overview of the central dogma of molecular biology

    Synthetic Gene Circuits: Design with Directed Evolution

    Get PDF
    Synthetic circuits offer great promise for generating insights into nature's underlying design principles or forward engineering novel biotechnology applications. However, construction of these circuits is not straightforward. Synthetic circuits generally consist of components optimized to function in their natural context, not in the context of the synthetic circuit. Combining mathematical modeling with directed evolution offers one promising means for addressing this problem. Modeling identifies mutational targets and limits the evolutionary search space for directed evolution, which alters circuit performance without the need for detailed biophysical information. This review examines strategies for integrating modeling and directed evolution and discusses the utility and limitations of available methods
    corecore