103,370 research outputs found

    Highly efficient surface hopping dynamics using a linear vibronic coupling model.

    Get PDF
    We report an implementation of the linear vibronic coupling (LVC) model within the surface hopping dynamics approach and present utilities for parameterizing this model in a blackbox fashion. This results in an extremely efficient method to obtain qualitative and even semi-quantitative information about the photodynamical behavior of a molecule, and provides a new route toward benchmarking the results of surface hopping computations. The merits and applicability of the method are demonstrated in a number of applications. First, the method is applied to the SO2 molecule showing that it is possible to compute its absorption spectrum beyond the Condon approximation, and that all the main features and timescales of previous on-the-fly dynamics simulations of intersystem crossing are reproduced while reducing the computational effort by three orders of magnitude. The dynamics results are benchmarked against exact wavepacket propagations on the same LVC potentials and against a variation of the electronic structure level. Four additional test cases are presented to exemplify the broader applicability of the model. The photodynamics of the isomeric adenine and 2-aminopurine molecules are studied and it is shown that the LVC model correctly predicts ultrafast decay in the former and an extended excited-state lifetime in the latter. Futhermore, the method correctly predicts ultrafast intersystem crossing in the modified nucleobase 2-thiocytosine and its absence in 5-azacytosine while it fails to describe the ultrafast internal conversion to the ground state in the latter

    Development of symbolic algorithms for certain algebraic processes

    Get PDF
    This study investigates the problem of computing the exact greatest common divisor of two polynomials relative to an orthogonal basis, defined over the rational number field. The main objective of the study is to design and implement an effective and efficient symbolic algorithm for the general class of dense polynomials, given the rational number defining terms of their basis. From a general algorithm using the comrade matrix approach, the nonmodular and modular techniques are prescribed. If the coefficients of the generalized polynomials are multiprecision integers, multiprecision arithmetic will be required in the construction of the comrade matrix and the corresponding systems coefficient matrix. In addition, the application of the nonmodular elimination technique on this coefficient matrix extensively applies multiprecision rational number operations. The modular technique is employed to minimize the complexity involved in such computations. A divisor test algorithm that enables the detection of an unlucky reduction is a crucial device for an effective implementation of the modular technique. With the bound of the true solution not known a priori, the test is devised and carefully incorporated into the modular algorithm. The results illustrate that the modular algorithm illustrate its best performance for the class of relatively prime polynomials. The empirical computing time results show that the modular algorithm is markedly superior to the nonmodular algorithms in the case of sufficiently dense Legendre basis polynomials with a small GCD solution. In the case of dense Legendre basis polynomials with a big GCD solution, the modular algorithm is significantly superior to the nonmodular algorithms in higher degree polynomials. For more definitive conclusions, the computing time functions of the algorithms that are presented in this report have been worked out. Further investigations have also been suggested

    Optimal design and optimal control of structures undergoing finite rotations and elastic deformations

    Full text link
    In this work we deal with the optimal design and optimal control of structures undergoing large rotations. In other words, we show how to find the corresponding initial configuration and the corresponding set of multiple load parameters in order to recover a desired deformed configuration or some desirable features of the deformed configuration as specified more precisely by the objective or cost function. The model problem chosen to illustrate the proposed optimal design and optimal control methodologies is the one of geometrically exact beam. First, we present a non-standard formulation of the optimal design and optimal control problems, relying on the method of Lagrange multipliers in order to make the mechanics state variables independent from either design or control variables and thus provide the most general basis for developing the best possible solution procedure. Two different solution procedures are then explored, one based on the diffuse approximation of response function and gradient method and the other one based on genetic algorithm. A number of numerical examples are given in order to illustrate both the advantages and potential drawbacks of each of the presented procedures.Comment: 35 pages, 11 figure

    Exploiting Polyhedral Symmetries in Social Choice

    Full text link
    A large amount of literature in social choice theory deals with quantifying the probability of certain election outcomes. One way of computing the probability of a specific voting situation under the Impartial Anonymous Culture assumption is via counting integral points in polyhedra. Here, Ehrhart theory can help, but unfortunately the dimension and complexity of the involved polyhedra grows rapidly with the number of candidates. However, if we exploit available polyhedral symmetries, some computations become possible that previously were infeasible. We show this in three well known examples: Condorcet's paradox, Condorcet efficiency of plurality voting and in Plurality voting vs Plurality Runoff.Comment: 14 pages; with minor improvements; to be published in Social Choice and Welfar

    Track 3: Computations in theoretical physics -- techniques and methods

    Full text link
    Here, we attempt to summarize the activities of Track 3 of the 17th International Workshop on Advanced Computing and Analysis Techniques in Physics Research (ACAT 2016).Comment: 10 pages, 3 figures, to appear in the proceedings of ACAT 201
    corecore