5,967 research outputs found

    A Quantitative Assessment of Forest Cover Change in the Moulouya River Watershed (Morocco) by the Integration of a Subpixel-Based and Object-Based Analysis of Landsat Data

    Get PDF
    A quantitative assessment of forest cover change in the Moulouya River watershed (Morocco) was carried out by means of an innovative approach from atmospherically corrected reflectance Landsat images corresponding to 1984 (Landsat 5 Thematic Mapper) and 2013 (Landsat 8 Operational Land Imager). An object-based image analysis (OBIA) was undertaken to classify segmented objects as forested or non-forested within the 2013 Landsat orthomosaic. A Random Forest classifier was applied to a set of training data based on a features vector composed of different types of object features such as vegetation indices, mean spectral values and pixel-based fractional cover derived from probabilistic spectral mixture analysis). The very high spatial resolution image data of Google Earth 2013 were employed to train/validate the Random Forest classifier, ranking the NDVI vegetation index and the corresponding pixel-based percentages of photosynthetic vegetation and bare soil as the most statistically significant object features to extract forested and non-forested areas. Regarding classification accuracy, an overall accuracy of 92.34% was achieved. The previously developed classification scheme was applied to the 1984 Landsat data to extract the forest cover change between 1984 and 2013, showing a slight net increase of 5.3% (ca. 8800 ha) in forested areas for the whole region

    Application of remote sensing to selected problems within the state of California

    Get PDF
    There are no author-identified significant results in this report

    User requirements and user acceptance of current and next-generation satellite mission and sensor complement, oriented toward the monitoring of water resources

    Get PDF
    Principal water resources users were surveyed to determine the applicability of remotely sensed data to their present and future requirements. Analysis of responses was used to assess the levels of adequacy of LANDSAT 1 and 2 in fulfilling hydrological functions, and to derive systems specifications for future water resources-oriented remote sensing satellite systems. The analysis indicates that water resources applications for all but the very large users require: (1) resolutions on the order of 15 meters, (2) a number of radiometric levels of the same order as currently used in LANDSAT 1 (64), (3) a number of spectral bands not in excess of those used in LANDSAT 1, and (4) a repetition frequency on the order of 2 weeks. The users had little feel for the value of new sensors (thermal IR, passive and active microwaves). What is needed in this area is to achieve specific demonstrations of the utility of these sensors and submit the results to the users to evince their judgement

    Digital mapping of mountain snowcover under European conditions

    Get PDF
    The author has identified the following significant results. A method for monitoring the snow cover in high mountain terrain such as the Swiss Alps includes the rapid classification of multitemporal data for small watersheds with very high accuracy. In addition to LANDSAT channels 4,5,6 and 7 an artificial channel was created containing the average altitude information of each pixel and allowing a subdivision of the watershed in accordance to the requirements of the runoff model. Even in very small watersheds of about 40 sq km the results achieved from LANDSAT data are at least as accurate as the ones gained from measurements of orthophotographs

    Application of remote sensing to selected problems within the state of California

    Get PDF
    There are no author-identified significant results in this report

    Developing Impervious Surface Estimates for Coastal New Hampshire

    Get PDF
    Future population growth and the corresponding increase in development in the coastal zone of NH are widely recognized as major threats to the integrity of coastal systems and their watersheds. The potential impacts associated with the expansion of developed land, and specifically with increasing amounts of impervious surfaces – rooftops, sidewalks, roads, and parking lots - may include significant changes in water quantity, degradation in water quality, and habitat loss. Because asphalt, concrete, stone, and other impenetrable materials effectively seal the ground surface, water is repelled and is prevented from infiltrating soils. Instead, stormwater runoff flows directly into our surface waters, depositing metals, excess nutrients, organics, and other pollutants into the receiving bodies. In addition to these environmental impacts, increasing levels of imperviousness can dramatically alter our landscapes, as forested and other natural settings are converted to urban/suburban uses. Many of the impacts associated with impervious surfaces had been well documented by studies in other areas of the country. However, comprehensive studies in coastal New Hampshire had not been undertaken. The primary goals of this project were to provide an accurate, current description of the extent of impervious surface coverage in this region, as well as an estimate of change in the amount of “imperviousness” over a recent, ten-year period

    Merging LANDSAT Derived Land Covers into Quad-referenced Geographic Information Systems

    Get PDF
    An approach for merging multiscene LANDSAT data bases into existing geographic information systems having 5-second or smaller cells is described. The approach uses the output from the State of Maryland's UNIVAC 1180-based LANDSAT classification program ASTEP (Algorithm Simulation Test and Evaluation) developed by NASA. The structure of the technique was designed to address the problems that emerged as part of the LANDSAT classification of the 64,000 square mile Chesapeake water shed involving twelve scenes. The removal of overlap among adjacent scenes, the crossreferencing of ground control points, and the isolation of the appropriate pixels from the LANDSAT data base for subsequent positioning into a file containing ancillary data referenced to a specific USGS 7 1/2 minute quadrangle sheet are described. Examples illustrate the clustering of classified LANDSAT pixels to define the dominant land use for each of 8,100 cells within a series of quadrangle sheets distributed over the State of Maryland. The approach uses a hard copy terminal tied to an ASTEP algorithm through telephone lines. A coordinate digitizing board for inputing the position of ground control points is also valuable, although manual measurements are possible. The approach is quite efficient and should be especially attractive for use on regional scale studies

    Application of LANDSAT images to wetland study and land use classification in west Tennessee, part 1

    Get PDF
    The author has identified the following significant results. densitometric analysis was performed on LANDSAT data to permit numerical classification of objects observed in the imagery on the basis of measurements of optical density. Relative light transmission measurements were taken on four types of scene elements in each of three LANDSAT black and white bands in order to determine which classification could be distinguished. The analysis of band 6 determined forest and agricultural classifications, but not the urban and wetlands. Both bands 4 and 5 showed a significant difference existed between the confirmed classification of wetlands-agriculture, and urban areas. Therefore, the combination of band 6 with either 4 or 5 would permit the separation of the urban from the wetland classification. To enhance the urban and wetland boundaries, the LANDSAT black and white bands were combined in a multispectral additive color viewer. Several combinations of filters and light intensities were used to obtain maximum discrimination between points of interest. The best results for enhancing wetland boundaries and urban areas were achieved by using a color composite (a blue, green, and red filter on bands 4, 5 and 6 respectively)
    corecore