9 research outputs found

    Development of a sensory substitution API

    Get PDF
    2018 Summer.Includes bibliographical references.Sensory substitution – or the practice of mapping information from one sensory modality to another – has been shown to be a viable technique for non-invasive sensory replacement and augmentation. With the rise in popularity, ubiquity, and capability of mobile devices and wearable electronics, sensory substitution research has seen a resurgence in recent years. Due to the standard features of mobile/wearable electronics such as Bluetooth, multicore processing, and audio recording, these devices can be used to drive sensory substitution systems. Therefore, there exists a need for a flexible, extensible software package capable of performing the required real-time data processing for sensory substitution, on modern mobile devices. The primary contribution of this thesis is the development and release of an Open Source Application Programming Interface (API) capable of managing an audio stream from the source of sound to a sensory stimulus interface on the body. The API (named Tactile Waves) is written in the Java programming language and packaged as both a Java library (JAR) and Android library (AAR). The development and design of the library is presented, and its primary functions are explained. Implementation details for each primary function are discussed. Performance evaluation of all processing routines is performed to ensure real-time capability, and the results are summarized. Finally, future improvements to the library and additional applications of sensory substitution are proposed

    Pitch and spectral analysis of speech based on an auditory synchrony model

    Get PDF
    Also issued as Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 1985.Includes bibliographical references (p. 228-235).Supported in part by the National Institutes of Health. 5 T32 NS07040Stephanie Seneff
    corecore