3,048 research outputs found

    A Survey on Deep Learning in Medical Image Analysis

    Full text link
    Deep learning algorithms, in particular convolutional networks, have rapidly become a methodology of choice for analyzing medical images. This paper reviews the major deep learning concepts pertinent to medical image analysis and summarizes over 300 contributions to the field, most of which appeared in the last year. We survey the use of deep learning for image classification, object detection, segmentation, registration, and other tasks and provide concise overviews of studies per application area. Open challenges and directions for future research are discussed.Comment: Revised survey includes expanded discussion section and reworked introductory section on common deep architectures. Added missed papers from before Feb 1st 201

    automatic features recognition for anthropometry

    Get PDF
    Abstract For the purpose of reducing uncertainties in the measurements of morphologically complex biological objects, the authors present a new automatic method, which takes advantage from the representation of the object in the form of the 3D geometric model obtained from CT-scans or 3D scanning. In this paper, the method is verified in real cases and compared with the traditional approaches

    Automatic vertebrae localization from CT scans using volumetric descriptors

    Get PDF
    The localization and identification of vertebrae in spinal CT images plays an important role in many clinical applications, such as spinal disease diagnosis, surgery planning, and post-surgery assessment. However, automatic vertebrae localization presents numerous challenges due to partial visibility, appearance similarity of different vertebrae, varying data quality, and the presence of pathologies. Most existing methods require prior information on which vertebrae are present in a scan, and perform poorly on pathological cases, making them of little practical value. In this paper we describe three novel types of local information descriptors which are used to build more complex contextual features, and train a random forest classifier. The three features are progressively more complex, systematically addressing a greater number of limitations of the current state of the art.Postprin

    Medical imaging analysis with artificial neural networks

    Get PDF
    Given that neural networks have been widely reported in the research community of medical imaging, we provide a focused literature survey on recent neural network developments in computer-aided diagnosis, medical image segmentation and edge detection towards visual content analysis, and medical image registration for its pre-processing and post-processing, with the aims of increasing awareness of how neural networks can be applied to these areas and to provide a foundation for further research and practical development. Representative techniques and algorithms are explained in detail to provide inspiring examples illustrating: (i) how a known neural network with fixed structure and training procedure could be applied to resolve a medical imaging problem; (ii) how medical images could be analysed, processed, and characterised by neural networks; and (iii) how neural networks could be expanded further to resolve problems relevant to medical imaging. In the concluding section, a highlight of comparisons among many neural network applications is included to provide a global view on computational intelligence with neural networks in medical imaging
    corecore