13,612 research outputs found

    A survey of comics research in computer science

    Full text link
    Graphical novels such as comics and mangas are well known all over the world. The digital transition started to change the way people are reading comics, more and more on smartphones and tablets and less and less on paper. In the recent years, a wide variety of research about comics has been proposed and might change the way comics are created, distributed and read in future years. Early work focuses on low level document image analysis: indeed comic books are complex, they contains text, drawings, balloon, panels, onomatopoeia, etc. Different fields of computer science covered research about user interaction and content generation such as multimedia, artificial intelligence, human-computer interaction, etc. with different sets of values. We propose in this paper to review the previous research about comics in computer science, to state what have been done and to give some insights about the main outlooks

    Integrated speech and morphological processing in a connectionist continuous speech understanding for Korean

    Full text link
    A new tightly coupled speech and natural language integration model is presented for a TDNN-based continuous possibly large vocabulary speech recognition system for Korean. Unlike popular n-best techniques developed for integrating mainly HMM-based speech recognition and natural language processing in a {\em word level}, which is obviously inadequate for morphologically complex agglutinative languages, our model constructs a spoken language system based on a {\em morpheme-level} speech and language integration. With this integration scheme, the spoken Korean processing engine (SKOPE) is designed and implemented using a TDNN-based diphone recognition module integrated with a Viterbi-based lexical decoding and symbolic phonological/morphological co-analysis. Our experiment results show that the speaker-dependent continuous {\em eojeol} (Korean word) recognition and integrated morphological analysis can be achieved with over 80.6% success rate directly from speech inputs for the middle-level vocabularies.Comment: latex source with a4 style, 15 pages, to be published in computer processing of oriental language journa

    Text Segmentation Using Exponential Models

    Full text link
    This paper introduces a new statistical approach to partitioning text automatically into coherent segments. Our approach enlists both short-range and long-range language models to help it sniff out likely sites of topic changes in text. To aid its search, the system consults a set of simple lexical hints it has learned to associate with the presence of boundaries through inspection of a large corpus of annotated data. We also propose a new probabilistically motivated error metric for use by the natural language processing and information retrieval communities, intended to supersede precision and recall for appraising segmentation algorithms. Qualitative assessment of our algorithm as well as evaluation using this new metric demonstrate the effectiveness of our approach in two very different domains, Wall Street Journal articles and the TDT Corpus, a collection of newswire articles and broadcast news transcripts.Comment: 12 pages, LaTeX source and postscript figures for EMNLP-2 pape

    Automatic Genre Classification of Latin Music Using Ensemble of Classifiers

    Get PDF
    This paper presents a novel approach to the task of automatic music genre classification which is based on ensemble learning. Feature vectors are extracted from three 30-second music segments from the beginning, middle and end of each music piece. Individual classifiers are trained to account for each music segment. During classification, the output provided by each classifier is combined with the aim of improving music genre classification accuracy. Experiments carried out on a dataset containing 600 music samples from two Latin genres (Tango and Salsa) have shown that for the task of automatic music genre classification, the features extracted from the middle and end music segments provide better results than using the beginning music segment. Furthermore, the proposed ensemble method provides better accuracy than using single classifiers and any individual segment

    Substructure and Boundary Modeling for Continuous Action Recognition

    Full text link
    This paper introduces a probabilistic graphical model for continuous action recognition with two novel components: substructure transition model and discriminative boundary model. The first component encodes the sparse and global temporal transition prior between action primitives in state-space model to handle the large spatial-temporal variations within an action class. The second component enforces the action duration constraint in a discriminative way to locate the transition boundaries between actions more accurately. The two components are integrated into a unified graphical structure to enable effective training and inference. Our comprehensive experimental results on both public and in-house datasets show that, with the capability to incorporate additional information that had not been explicitly or efficiently modeled by previous methods, our proposed algorithm achieved significantly improved performance for continuous action recognition.Comment: Detailed version of the CVPR 2012 paper. 15 pages, 6 figure

    Learning Timbre Analogies from Unlabelled Data by Multivariate Tree Regression

    Get PDF
    This is the Author's Original Manuscript of an article whose final and definitive form, the Version of Record, has been published in the Journal of New Music Research, November 2011, copyright Taylor & Francis. The published article is available online at http://www.tandfonline.com/10.1080/09298215.2011.596938

    Detecting User Engagement in Everyday Conversations

    Full text link
    This paper presents a novel application of speech emotion recognition: estimation of the level of conversational engagement between users of a voice communication system. We begin by using machine learning techniques, such as the support vector machine (SVM), to classify users' emotions as expressed in individual utterances. However, this alone fails to model the temporal and interactive aspects of conversational engagement. We therefore propose the use of a multilevel structure based on coupled hidden Markov models (HMM) to estimate engagement levels in continuous natural speech. The first level is comprised of SVM-based classifiers that recognize emotional states, which could be (e.g.) discrete emotion types or arousal/valence levels. A high-level HMM then uses these emotional states as input, estimating users' engagement in conversation by decoding the internal states of the HMM. We report experimental results obtained by applying our algorithms to the LDC Emotional Prosody and CallFriend speech corpora.Comment: 4 pages (A4), 1 figure (EPS
    • ā€¦
    corecore