5,452 research outputs found

    Why Should We Care About Molecular Coevolution?

    Get PDF
    Non-independent evolution of amino acid sites has become a noticeable limitation of most methods aimed at identifying selective constraints at functionally important amino acid sites or protein regions. The need for a generalised framework to account for non-independence of amino acid sites has fuelled the design and development of new mathematical models and computational tools centred on resolving this problem. Molecular coevolution is one of the most active areas of research, with an increasing rate of new models and methods being developed everyday. Both parametric and non-parametric methods have been developed to account for correlated variability of amino acid sites. These methods have been utilised for detecting phylogenetic, functional and structural coevolution as well as to identify surfaces of amino acid sites involved in protein-protein interactions. Here we discuss and briefly describe these methods, and identify their advantages and limitations

    Rational design of a (S)-selective-transaminase for asymmetric synthesis of (1S)-1-(1,1′-biphenyl-2-yl)ethanamine

    Get PDF
    Amine transaminases offer an environmentally sustainable synthesis route for the production of pure chiral amines. However, their catalytic efficiency toward bulky ketone substrates is greatly limited by steric hindrance and therefore presents a great challenge for industrial synthetic applications. We hereby report an example of rational transaminase enzyme design to help alleviate these challenges. Starting from the Vibrio fluvialis amine transaminase that has no detectable catalytic activity toward the bulky aromatic ketone 2-acetylbiphenyl, we employed a rational design strategy combining in silico and in vitro studies to engineer the transaminase enzyme with a minimal number of mutations, achieving an high catalytic activity and high enantioselectivity. We found that, by introducing two mutations W57G/R415A, detectable enzyme activity was achieved. The rationally designed variant, W57F/R88H/V153S/K163F/I259M/R415A/V422A, showed an improvement in reaction rate by more than 1716-fold toward the bulky ketone under study, producing the corresponding enantiomeric pure (S)-amine (enantiomeric excess (ee) value of >99%)

    Study on Phylogenetic Relationships, Variability, and Correlated Mutations in M2 Proteins of Influenza Virus A

    Get PDF
    M2 channel, an influenza virus transmembrane protein, serves as an important target for antiviral drug design. There are still discordances concerning the role of some residues involved in proton transfer as well as the mechanism of inhibition by commercial drugs. The viral M2 proteins show high conservativity; about 3/4 of the positions are occupied by one residue in over 95%. Nine M2 proteins from the H3N2 strain and possibly two proteins from H2N2 strains make a phylogenic cluster closely related to 2RLF. The variability range is limited to 4 residues/position with one exception. The 2RLF protein stands out by the presence of 2 serines at the positions 19 and 50, which are in most other M2 proteins occupied by cysteines. The study of correlated mutations shows that there are several positions with significant mutational correlation that have not been described so far as functionally important. That there are 5 more residues potentially involved in the M2 mechanism of action. The original software used in this work (Consensus Constructor, SSSSg, Corm, Talana) is freely accessible as stand-alone offline applications upon request to the authors. The other software used in this work is freely available online for noncommercial purposes at public services on bioinformatics such as ExPASy or NCBI. The study on mutational variability, evolutionary relationship, and correlated mutation presented in this paper is a potential way to explain more completely the role of significant factors in proton channel action and to clarify the inhibition mechanism by specific drugs

    Molecular evolution of viral multifunctional proteins: the case of Potyvirus HC-Pro

    Get PDF
    [EN] Our knowledge on the mode of evolution of the multifunctional viral proteins remains incomplete. To tackle this problem, here, we have investigated the evolutionary dynamics of the potyvirus multifunctional protein HC-Pro, with particular focus on its functional domains. The protein was partitioned into the three previously described functional domains, and each domain was analyzed separately and assembled. We searched for signatures of adaptive evolution and evolutionary dependencies of amino acid sites within and between the three domains using the entire set of available potyvirus sequences in GenBank. Interestingly, we identified strongly significant patterns of co-occurrence of adaptive events along the phylogenetic tree in the three domains. These patterns suggest that Domain I, whose main function is to mediate aphid transmission, has likely been coevolving with the other two domains, which are involved in different functions but all requiring the capacity to bind RNA. By contrast, episodes of positive selection on Domains II and III did not correlate, reflecting a trade-off between their evolvability and their evolutionary dependency likely resulting from their functional overlap. Covariation analyses have identified several groups of amino acids with evidence of concerted variation within each domain, but interdomain significant covariations were only found for Domains II and III, further reflecting their functional overlappingThis work was supported by grants BFU2012-30805 (SFE) and BFU2012-36346 (MAF) from the Spanish Direccio´n General de Investigacio´n Cientı´fica y Te´cnica and by an EMBO Short-Term Fellowship and the Mentoring Program from the Foundation for Polish Science (BHJ).Hasiów-Jaroszewska, B.; Fares Riaño, MA.; Elena Fito, SF. (2014). Molecular evolution of viral multifunctional proteins: the case of Potyvirus HC-Pro. Journal of Molecular Evolution. 78(1):75-86. https://doi.org/10.1007/s00239-013-9601-0S7586781Adams MJ, Antoniw JF, Beaudoin F (2005) Overview and analysis of the polyprotein cleavage sites in the family Potyviridae. Mol Plant Pathol 6:471–487Atreya CD, Atryea P, Thornbury DW, Pirone TP (1992) Site-directed mutations in the potyvirus HC-Pro gene affect helper component activity, virus accumulation and symptoms expression in infected tobacco plants. Virology 191:106–111Blanc S, López-Moya JJ, Wang R, García-Lampasona S, Thornbury DW, Pirone TP (1997) A specific interaction between coat protein and helper component correlates with aphid transmission of a potyvirus. Virology 231:141–147Blanc S, Ammar ED, García-Lampasona S, Dolja VV, Llave C, Baker J, Pirone TP (1998) Mutations in the potyvirus helper component protein: effects on interactions with virions and aphid stylets. J Gen Virol 79:3119–3122Cantó T, López-Moya JJ, Serra-Yodi MT, Díaz-Ruiz JR, López-Abella D (1995) Different helper component mutations associated with lack of aphid transmissibility in two isolates of potato virus. Phytopathology 85:1519–1524Carrington JC, Freed DD, Sanders TC (1989) Autocatalytic processing of the potyvirus helper component proteinase in Escherichia coli and in vitro. J Virol 63:4459–4463Chung BY, Miller WA, Atkins JF, Firth AE (2008) An overlapping essential gene in the Potyviridae. Proc Natl Acad Sci USA 105:5897–5902Cronin S, Verchot J, Haldeman-Cahill R, Schaad MC, Carrington JC (1995) Long distance movement factor: a transport function of the potyvirus helper component-proteinase. Plant Cell 7:549–559Edgar RC (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucl Acids Res 32:1792–1797Elena SF, Rodrigo G (2012) Towards and integrated molecular model of plant-virus interactions. Curr Opin Virol 2:713–718Fares MA (2004) SWAPSC: sliding-window analysis procedure to detect selective constraints. Bioinformatics 20:2867–2868Fares MA, McNally D (2006) CAPS: coevolution analysis using protein sequences. Bioinformatics 22:2821–2822Fares MA, Travers AA (2006) A novel method for detecting intramolecular coevolution: adding a further dimension to selective constrains analyses. Genetics 173:9–23Fares MA, Elena SF, Ortiz J, Moya A, Barrio E (2002) A sliding window-based method to detect selective constraints in protein-coding genes and its application to RNA viruses. J Mol Evol 55:509–521Gibbs A, Ohshima K (2010) Potyviruses and the digital revolution. Annu Rev Phytopathol 48:205–223Guo D, Mertis A, Saarma M (1999) Self-association and mapping of interaction domains of helper component of Potato virus A potyvirus. J Gen Virol 80:1127–1131Guo B, Lin J, Ye K (2011) Structure of the autocatalytic cysteine protease domain of potyvirus helper-component proteinase. J Biol Chem 286:21937–21943Haikonen T, Rajamäki ML, Tian YP, Valkonen JPT (2013) Mutation of a short variable region in HC-Pro protein of Potato virus A affects interactions with microtubule-associated protein and induces necrotic responses in tobacco. Mol Plant Microbe Interact 26:721–733Hall TA (1999) BIOEDIT: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucl Acids Symp Ser 41:95–98Hughes AL (2009) Small effective population sizes and rare nonsynonymous variants in potyviruses. Virology 393:127–134Jones DT (1999) Protein secondary structure prediction based on position-specific scoring matrices. J Mol Biol 292:195–202Kasschau KD, Carrington JC (1995) Requirement for HC-Pro processing during genome amplification of Tobacco etch potyvirus. Virology 209:268–273Kasschau KD, Carrington JC (2001) Long-distance movement and replication maintenance functions correlate with silencing suppression activity of potyviral HC-Pro. Virology 285:71–81Kasschau KD, Cronin S, Carrington JC (1997) Genome amplification and long-distance movement functions associated with the central domain of Tobacco etch potyvirus helper component-proteinase. Virology 228:251–262Kosakovsky Pond SL, Frost SDW (2005a) DATAMONKEY: rapid detection of selective pressure on individual sites of codon alignments. Bioinformatics 21:2531–2533Kosakovsky Pond SL, Frost SDW (2005b) Not so different after all: a comparison of methods for detecting amino acid sites under selection. Mol Biol Evol 22:1208–1222Kosakovsky Pond SL, Posada D, Gravenor MB, Woelk CH, Frost SDW (2006) Automated phylogenetic detection of recombination using a genetic algorithm. Mol Biol Evol 23:1891–1901Lakatos L, Csorba T, Pantaleo V, Chapman EJ, Carrington JC, Liu YP, Dojla VV, Calvino LF, López-Moya JJ, Burgyan J (2006) Small RNA binding is a common strategy to suppress RNA silencing by several viral suppressors. EMBO J 25:2768–2780Lalić J, Elena SF (2012) Magnitude and sign epistasis among deleterious mutations in a positive-sense plant RNA virus. Heredity 109:71–77Leigh JW, Susko E, Baumgartner M, Roger AJ (2008) Testing congruence in phylogenomic analysis. Syst Biol 57:104–115Li WH (1993) Unbiased estimation of the rates of synonymous and nonsynonymous substitution. J Mol Evol 36:96–99Llave C, Kasschau KD, Carrington JC (2000) Virus-encoded suppressor of posttranscriptional gene silencing targets a maintenance step in the silencing pathway. Proc Natl Acad Sci USA 97:13401–13406Maia S, Haenni AL, Bernardi F (1996) Potyviral HC-Pro: a multifunctional protein. J Gen Virol 77:1335–1341Martin DP, Lemey P, Lott M, Moulton V, Posada D, Lefeuvre P (2010) RDP3: a flexible and fast computer program for analyzing recombination. Bioinformatics 26:2462–2463Moroni E, Morra G, Colombo G (2012) Molecular dynamics simulations of Hsp90 with an eye to inhibitor design. Pharmaceuticals 5:944–962Peng YH, Kadoury D, Gaol-On A, Huet H, Wang Y, Raccah B (1998) Mutations in HC-Pro gene of Zucchini yellow mosaic potyvirus: effects on aphid transmission and binding to purified virions. J Gen Virol 79:897–904Plisson C, Drucker M, Blanc S, German-Retana S, Le Gall O, Thomas D, Bron P (2003) Structural characterization of HC-Pro a plant virus multifunctional protein. J Biol Chem 278:23753–23761Posada D, Crandall KA (1998) MODELTEST: testing the model of DNA substitution. Bioinformatics 14:817–818Revers F, Le Gall O, Candresse T, Maule J (1999) New advances in understanding the molecular biology of plant/potyvirus interaction. Mol Plant Microbe Interact 12:367–376Riechmann JL, Lain S, García JA (1992) Highlights and prospects of potyvirus molecular biology. J Gen Virol 73:1–16Roy A, Kucukural A, Zhang Y (2010) I-TASSER: a unified platform for automated protein structure and function prediction. Nat Protoc 5:725–738Ruiz-Ferrer V, Boskovic J, Alfonso C, Rivas G, Llorca O, López-Abella D, López-Moya JJ (2005) Structural analysis of Tobacco etch potyvirus HC-pro oligomers involved in aphid transmission. J Virol 79:3758–3765Shiboleth YM, Haronsky E, Leibman D, Arazi T, Wassenegger M, Whitham SA, Gaba V, Gal-On A (2007) The conserved FRNK box in HC-Pro, a plant viral suppressor of gene silencing, is required for small RNA binding and mediates symptom development. J Virol 81:13135–13148Smoot M, Ono K, Ruschelnski J, Wang PL, Ideker T (2011) CYTOSCAPE 2.8: new features for data integration and network visualization. Bioinformatics 27:431–432Syller J (2006) The roles and mechanisms of helper component proteins encoded by potyviruses and caulimoviruses. Physiol Mol Plant Pathol 67:119–130Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731–2739Torres-Barceló C, Martín S, Daròs JA, Elena SF (2008) From hypo- to hypersuppression: effect of amino acid substitutions on the RNA-silencing suppressor activity of Tobacco etch potyvirus HC-Pro. Genetics 180:1039–1049Torres-Barceló C, Daròs JA, Elena SF (2010a) Compensatory molecular evolution of HC-Pro, an RNA-silencing suppressor from a plant RNA virus. Mol Biol Evol 27:543–551Torres-Barceló C, Daròs JA, Elena SF (2010b) HC-Pro hypo- and hypersuppressor mutants: differences in viral siRNA accumulation in vivo and siRNA binding activity in vitro. Arch Virol 155:251–254Urcuqui-Inchima S, Walter J, Drugeon G, German-Retans S, Haeni AL, Candresse T, Bernardi F, Le Gall O (1999) Potyvirus HC-Pro self-interaction in the yeast two hybrid system and delineation of the interaction domain involved. Virology 258:95–99Urcuqui-Inchima S, Maia IG, Arruda P, Haenni AL, Bernardi F (2000) Deletion mapping of the potyviral helper component-proteinase reveals two regions involved in RNA binding. Virology 268:104–111Urcuqui-Inchima S, Haenni AL, Bernardi F (2001) Potyvirus proteins: a wealth of functions. Virus Res 74:157–175Varrelmann M, Maiss E, Pilot R, Palkovics L (2007) Use of pentapeptide-insertion scanning mutagenesis for functional mapping of the Plum pox virus helper component proteinase suppressor of gene silencing. J Gen Virol 88:10051015Ward CW, Shukla DD (1991) Taxonomy of potyviruses: current problems and some solutions. Intervirology 32:269–296Wu S, Zhang Y (2007) LOMETS: a local meta-threading-server for protein structure prediction. Nucl Acids Res 35:3375–3382Yang Z, Bielawski JP (2000) Statistical methods for detecting molecular adaptation. Trends Ecol Evol 15:496–503Yap YK, Duangjit J, Panyim S (2009) N-terminal of Papaya ringspot virus type-W (PRSV-W) helper component proteinase (HC-Pro) is essential for PRSV systemic infection in zucchini. Virus Genes 38:461–467Zheng H, Yan F, Lu Y, Sun L, Lin L, Cai L, Hou M, Chen J (2010) Mapping the self-interaction domains of TuMV HC-pro and the subcellular localization of the protein. Virus Genes 42:110–11
    corecore