63,360 research outputs found

    A new method for range estimation using simple infrared sensors

    Get PDF
    We describe a new method for position estimation of planar surfaces using simple, low-cost infrared (IR) sensors. The intensity data acquired with IR sensors depends highly on the surface properties and the configuration of the sensors with respect to the surface. Therefore, in many related studies, either the properties of the surface are determined first or certain assumptions about the surface are made to estimate the distance and the orientation of the surface relative to the sensors. We propose a novel method for position estimation of surfaces with IR sensors without the need to determine the surface properties first. The method is considered to be independent of the type of surface encountered since it is based on searching the position of the maximum value of the intensity data rather than using absolute intensity values. The method is verified experimentally with planar surfaces of different surface properties. An intelligent feature of our system is that its operating range is made adaptive based on the maximum intensity of the detected signal. The absolute mean range error for the method resulting in the lowest errors is 0.15 cm over the range from 10 to 50 cm. The cases where the azimuth and elevation angles are nonzero are considered as well. The results obtained demonstrate that IR sensors can be used for localization to an unexpectedly high accuracy without prior knowledge of the surface characteristics. © 2005 IEEE

    Improved range estimation using simple infrared sensors without prior knowledge of surface characteristics

    Get PDF
    This paper describes a new method for position estimation of planar surfaces using simple, low-cost infrared sensors. The intensity data acquired with infrared sensors depend highly on the surface properties and the configuration of the sensors with respect to the surface. Therefore, in many related studies, either the properties of the surface are determined first or certain assumptions about the surface are made in order to estimate the distance and the orientation of the surface relative to the sensors. We propose a novel method for position estimation of surfaces with infrared sensors without the need to determine the surface properties first. The method is considered to be independent of the type of surface encountered since it is based on searching for the position of the maximum value of the intensity data rather than using absolute intensity values which would depend on the surface type. The method is verified experimentally with planar surfaces of different surface properties. An intelligent feature of our system is that its operating range is made adaptive based on the maximum intensity of the detected signal. Three different ways of processing the intensity signals are considered for range estimation. The absolute mean range error for the method resulting in the lowest errors is 0.15 cm over the range from 10 to 50 cm. The cases where the azimuth and elevation angles are nonzero are considered as well. The results obtained demonstrate that infrared sensors can be used for localization to an unexpectedly high accuracy without prior knowledge of the surface characteristics. © 2005 IOP Publishing Ltd

    Scene-based nonuniformity correction with video sequences and registration

    Get PDF
    We describe a new, to our knowledge, scene-based nonuniformity correction algorithm for array detectors. The algorithm relies on the ability to register a sequence of observed frames in the presence of the fixed-pattern noise caused by pixel-to-pixel nonuniformity. In low-to-moderate levels of nonuniformity, sufficiently accurate registration may be possible with standard scene-based registration techniques. If the registration is accurate, and motion exists between the frames, then groups of independent detectors can be identified that observe the same irradiance (or true scene value). These detector outputs are averaged to generate estimates of the true scene values. With these scene estimates, and the corresponding observed values through a given detector, a curve-fitting procedure is used to estimate the individual detector response parameters. These can then be used to correct for detector nonuniformity. The strength of the algorithm lies in its simplicity and low computational complexity. Experimental results, to illustrate the performance of the algorithm, include the use of visible-range imagery with simulated nonuniformity and infrared imagery with real nonuniformity

    Optimal Exploitation of the Sentinel-2 Spectral Capabilities for Crop Leaf Area Index Mapping

    Get PDF
    The continuously increasing demand of accurate quantitative high quality information on land surface properties will be faced by a new generation of environmental Earth observation (EO) missions. One current example, associated with a high potential to contribute to those demands, is the multi-spectral ESA Sentinel-2 (S2) system. The present study focuses on the evaluation of spectral information content needed for crop leaf area index (LAI) mapping in view of the future sensors. Data from a field campaign were used to determine the optimal spectral sampling from available S2 bands applying inversion of a radiative transfer model (PROSAIL) with look-up table (LUT) and artificial neural network (ANN) approaches. Overall LAI estimation performance of the proposed LUT approach (LUTN₅₀) was comparable in terms of retrieval performances with a tested and approved ANN method. Employing seven- and eight-band combinations, the LUTN₅₀ approach obtained LAI RMSE of 0.53 and normalized LAI RMSE of 0.12, which was comparable to the results of the ANN. However, the LUTN50 method showed a higher robustness and insensitivity to different band settings. Most frequently selected wavebands were located in near infrared and red edge spectral regions. In conclusion, our results emphasize the potential benefits of the Sentinel-2 mission for agricultural applications

    Tahap penguasaan, sikap dan minat pelajar Kolej Kemahiran Tinggi MARA terhadap mata pelajaran Bahasa Inggeris

    Get PDF
    Kajian ini dilakukan untuk mengenal pasti tahap penguasaan, sikap dan minat pelajar Kolej Kemahiran Tinggi Mara Sri Gading terhadap Bahasa Inggeris. Kajian yang dijalankan ini berbentuk deskriptif atau lebih dikenali sebagai kaedah tinjauan. Seramai 325 orang pelajar Diploma in Construction Technology dari Kolej Kemahiran Tinggi Mara di daerah Batu Pahat telah dipilih sebagai sampel dalam kajian ini. Data yang diperoleh melalui instrument soal selidik telah dianalisis untuk mendapatkan pengukuran min, sisihan piawai, dan Pekali Korelasi Pearson untuk melihat hubungan hasil dapatan data. Manakala, frekuensi dan peratusan digunakan bagi mengukur penguasaan pelajar. Hasil dapatan kajian menunjukkan bahawa tahap penguasaan Bahasa Inggeris pelajar adalah berada pada tahap sederhana manakala faktor utama yang mempengaruhi penguasaan Bahasa Inggeris tersebut adalah minat diikuti oleh sikap. Hasil dapatan menggunakan pekali Korelasi Pearson juga menunjukkan bahawa terdapat hubungan yang signifikan antara sikap dengan penguasaan Bahasa Inggeris dan antara minat dengan penguasaan Bahasa Inggeris. Kajian menunjukkan bahawa semakin positif sikap dan minat pelajar terhadap pengajaran dan pembelajaran Bahasa Inggeris semakin tinggi pencapaian mereka. Hasil daripada kajian ini diharapkan dapat membantu pelajar dalam meningkatkan penguasaan Bahasa Inggeris dengan memupuk sikap positif dalam diri serta meningkatkan minat mereka terhadap Bahasa Inggeris dengan lebih baik. Oleh itu, diharap kajian ini dapat memberi panduan kepada pihak-pihak yang terlibat dalam membuat kajian yang akan datang

    Shift Estimation Algorithm for Dynamic Sensors With Frame-to-Frame Variation in Their Spectral Response

    Get PDF
    This study is motivated by the emergence of a new class of tunable infrared spectral-imaging sensors that offer the ability to dynamically vary the sensor\u27s intrinsic spectral response from frame to frame in an electronically controlled fashion. A manifestation of this is when a sequence of dissimilar spectral responses is periodically realized, whereby in every period of acquired imagery, each frame is associated with a distinct spectral band. Traditional scene-based global shift estimation algorithms are not applicable to such spectrally heterogeneous video sequences, as a pixel value may change from frame to frame as a result of both global motion and varying spectral response. In this paper, a novel algorithm is proposed and examined to fuse a series of coarse global shift estimates between periodically sampled pairs of nonadjacent frames to estimate motion between consecutive frames; each pair corresponds to two nonadjacent frames of the same spectral band. The proposed algorithm outperforms three alternative methods, with the average error being one half of that obtained by using an equal weights version of the proposed algorithm, one-fourth of that obtained by using a simple linear interpolation method, and one-twentieth of that obtained by using a naiÂżve correlation-based direct method

    Hand gesture recognition based on signals cross-correlation

    Get PDF
    • 

    corecore