5,078 research outputs found

    Historical collaborative geocoding

    Full text link
    The latest developments in digital have provided large data sets that can increasingly easily be accessed and used. These data sets often contain indirect localisation information, such as historical addresses. Historical geocoding is the process of transforming the indirect localisation information to direct localisation that can be placed on a map, which enables spatial analysis and cross-referencing. Many efficient geocoders exist for current addresses, but they do not deal with the temporal aspect and are based on a strict hierarchy (..., city, street, house number) that is hard or impossible to use with historical data. Indeed historical data are full of uncertainties (temporal aspect, semantic aspect, spatial precision, confidence in historical source, ...) that can not be resolved, as there is no way to go back in time to check. We propose an open source, open data, extensible solution for geocoding that is based on the building of gazetteers composed of geohistorical objects extracted from historical topographical maps. Once the gazetteers are available, geocoding an historical address is a matter of finding the geohistorical object in the gazetteers that is the best match to the historical address. The matching criteriae are customisable and include several dimensions (fuzzy semantic, fuzzy temporal, scale, spatial precision ...). As the goal is to facilitate historical work, we also propose web-based user interfaces that help geocode (one address or batch mode) and display over current or historical topographical maps, so that they can be checked and collaboratively edited. The system is tested on Paris city for the 19-20th centuries, shows high returns rate and is fast enough to be used interactively.Comment: WORKING PAPE

    Constrained tGAP for generalisation between scales: the case of Dutch topographic data

    Get PDF
    This article presents the results of integrating large- and medium-scale data into a unified data structure. This structure can be used as a single non-redundant representation for the input data, which can be queried at any arbitrary scale between the source scales. The solution is based on the constrained topological Generalized Area Partition (tGAP), which stores the results of a generalization process applied to the large-scale dataset, and is controlled by the objects of the medium-scale dataset, which act as constraints on the large-scale objects. The result contains the accurate geometry of the large-scale objects enriched with the generalization knowledge of the medium-scale data, stored as references in the constraint tGAP structure. The advantage of this constrained approach over the original tGAP is the higher quality of the aggregated maps. The idea was implemented with real topographic datasets from The Netherlands for the large- (1:1000) and medium-scale (1:10,000) data. The approach is expected to be equally valid for any categorical map and for other scales as well

    Improving Image Classification with Location Context

    Full text link
    With the widespread availability of cellphones and cameras that have GPS capabilities, it is common for images being uploaded to the Internet today to have GPS coordinates associated with them. In addition to research that tries to predict GPS coordinates from visual features, this also opens up the door to problems that are conditioned on the availability of GPS coordinates. In this work, we tackle the problem of performing image classification with location context, in which we are given the GPS coordinates for images in both the train and test phases. We explore different ways of encoding and extracting features from the GPS coordinates, and show how to naturally incorporate these features into a Convolutional Neural Network (CNN), the current state-of-the-art for most image classification and recognition problems. We also show how it is possible to simultaneously learn the optimal pooling radii for a subset of our features within the CNN framework. To evaluate our model and to help promote research in this area, we identify a set of location-sensitive concepts and annotate a subset of the Yahoo Flickr Creative Commons 100M dataset that has GPS coordinates with these concepts, which we make publicly available. By leveraging location context, we are able to achieve almost a 7% gain in mean average precision

    Constrained set-up of the tGAP structure for progressive vector data transfer

    Get PDF
    A promising approach to submit a vector map from a server to a mobile client is to send a coarse representation first, which then is incrementally refined. We consider the problem of defining a sequence of such increments for areas of different land-cover classes in a planar partition. In order to submit well-generalised datasets, we propose a method of two stages: First, we create a generalised representation from a detailed dataset, using an optimisation approach that satisfies certain cartographic constraints. Second, we define a sequence of basic merge and simplification operations that transforms the most detailed dataset gradually into the generalised dataset. The obtained sequence of gradual transformations is stored without geometrical redundancy in a structure that builds up on the previously developed tGAP (topological Generalised Area Partitioning) structure. This structure and the algorithm for intermediate levels of detail (LoD) have been implemented in an object-relational database and tested for land-cover data from the official German topographic dataset ATKIS at scale 1:50 000 to the target scale 1:250 000. Results of these tests allow us to conclude that the data at lowest LoD and at intermediate LoDs is well generalised. Applying specialised heuristics the applied optimisation method copes with large datasets; the tGAP structure allows users to efficiently query and retrieve a dataset at a specified LoD. Data are sent progressively from the server to the client: First a coarse representation is sent, which is refined until the requested LoD is reached

    Modeling and improving Spatial Data Infrastructure (SDI)

    Get PDF
    Spatial Data Infrastructure (SDI) development is widely known to be a challenging process owing to its complex and dynamic nature. Although great effort has been made to conceptually explain the complexity and dynamics of SDIs, few studies thus far have actually modeled these complexities. In fact, better modeling of SDI complexities will lead to more reliable plans for its development. A state-of-the-art simulation model of SDI development, hereafter referred to as SMSDI, was created by using the system dynamics (SD) technique. The SMSDI enables policy-makers to test various investment scenarios in different aspects of SDI and helps them to determine the optimum policy for further development of an SDI. This thesis begins with adaption of the SMSDI to a new case study in Tanzania by using the community of participant concept, and further development of the model is performed by using fuzzy logic. It is argued that the techniques and models proposed in this part of the study enable SDI planning to be conducted in a more reliable manner, which facilitates receiving the support of stakeholders for the development of SDI.Developing a collaborative platform such as SDI would highlight the differences among stakeholders including the heterogeneous data they produce and share. This makes the reuse of spatial data difficult mainly because the shared data need to be integrated with other datasets and used in applications that differ from those originally produced for. The integration of authoritative data and Volunteered Geographic Information (VGI), which has a lower level structure and production standards, is a new, challenging area. The second part of this study focuses on proposing techniques to improve the matching and integration of spatial datasets. It is shown that the proposed solutions, which are based on pattern recognition and ontology, can considerably improve the integration of spatial data in SDIs and enable the reuse or multipurpose usage of available data resources

    Developing tools and models for evaluating geospatial data integration of official and VGI data sources

    Get PDF
    PhD ThesisIn recent years, systems have been developed which enable users to produce, share and update information on the web effectively and freely as User Generated Content (UGC) data (including Volunteered Geographic Information (VGI)). Data quality assessment is a major concern for supporting the accurate and efficient spatial data integration required if VGI is to be used alongside official, formal, usually governmental datasets. This thesis aims to develop tools and models for the purpose of assessing such integration possibilities. Initially, in order to undertake this task, geometrical similarity of formal and informal data was examined. Geometrical analyses were performed by developing specific programme interfaces to assess the positional, linear and polygon shape similarity among reference field survey data (FS); official datasets such as data from Ordnance Survey (OS), UK and General Directorate for Survey (GDS), Iraq agencies; and VGI information such as OpenStreetMap (OSM) datasets. A discussion of the design and implementation of these tools and interfaces is presented. A methodology has been developed to assess such positional and shape similarity by applying different metrics and standard indices such as the National Standard for Spatial Data Accuracy (NSSDA) for positional quality; techniques such as buffering overlays for linear similarity; and application of moments invariant for polygon shape similarity evaluations. The results suggested that difficulties exist for any geometrical integration of OSM data with both bench mark FS and formal datasets, but that formal data is very close to reference datasets. An investigation was carried out into contributing factors such as data sources, feature types and number of data collectors that may affect the geometrical quality of OSM data and consequently affect the integration process of OSM datasets with FS, OS and GDS. Factorial designs were undertaken in this study in order to develop and implement an experiment to discover the effect of these factors individually and the interaction between each of them. The analysis found that data source is the most significant factor that affects the geometrical quality of OSM datasets, and that there are interactions among all these factors at different levels of interaction. This work also investigated the possibility of integrating feature classification of official datasets such as data from OS and GDS geospatial data agencies, and informal datasets such as OSM information. In this context, two different models were developed. The first set of analysis included the evaluation of semantic integration of corresponding feature classifications of compared datasets. The second model was concerned with assessing the ability of XML schema matching of feature classifications of tested datasets. This initially involved a tokenization process in order to split up into single words classifications that were composed of multiple words. Subsequently, encoding feature classifications as XML schema trees was undertaken. The semantic similarity, data type similarity and structural similarity were measured between the nodes of compared schema trees. Once these three similarities had been computed, a weighted combination technique has been adopted in order to obtain the overall similarity. The findings of both sets of analysis were not encouraging as far as the possibility of effectively integrating feature classifications of VGI datasets, such as OSM information, and formal datasets, such as OS and GDS datasets, is concerned.Ministry of Higher Education and Scientific Research, Republic of Iraq
    corecore