328 research outputs found

    Design and multiplier-less implementation of a class of two-channel PR FIR filterbanks and wavelets with low system delay

    Get PDF
    In this paper, a new method for designing two-channel PR FIR filterbanks with low system delay is proposed. It is based on the generalization of the structure previously proposed by Phoong et al. Such structurally PR filterbanks are parameterized by two functions (β(z) and α(z)) that can be chosen as linear-phase FIR or allpass functions to construct FIR/IIR filterbanks with good frequency characteristics. The case of using identical β(z) and α(z) was considered by Phoong et al. with the delay parameter M chosen as 2N - 1. In this paper, the more general case of using different nonlinear-phase FIR functions for β(z) and α(z) is studied. As the linear-phase constraint is relaxed, the lengths of β(z) and α(z) are no longer restricted by the delay parameters of the filterbanks. Hence, higher stopband attenuation can still be achieved at low system delay. The design of the proposed low-delay filterbanks is formulated as a complex polynomial approximation problem, which can be solved by the Remez exchange algorithm or analytic formula with very low complexity. In addition, the orders and delay parameters can be estimated from the given filter specifications using a simple empirical formula. Therefore, low-delay two-channel PR filterbanks with flexible stopband attenuation and cutoff frequencies can be designed using existing filter design algorithms. The generalization of the present approach to the design of a class of wavelet bases associated with these low-delay filterbanks and its multiplier-less implementation using the sum of powers-of-two coefficients are also studied.published_or_final_versio

    Zolotarev polynomials utilization in spectral analysis

    Get PDF
    Tato práce je zaměřena na vybrané problémy Zolotarevových polynomů a jejich vyuľití ke spektrální analýze. Pokud jde o Zolotarevovy polynomy, jsou popsány základní vlastnosti symetrických Zolotarevových polynomů včetně ortogonality. Rovněľ se provádí prozkoumání numerických vlastností algoritmů generujících dokonce Zolotarevovy polynomy. Pokud jde o aplikaci Zolotarevových polynomů na spektrální analýzu, je implementována aproximovaná diskrétní Zolotarevova transformace, která umoľňuje výpočet spektrogramu (zologramu) v reálném čase. Aproximovaná diskrétní zolotarevská transformace je navíc upravena tak, aby lépe fungovala při analýze tlumených exponenciálních signálů. A nakonec je navrľena nová diskrétní Zolotarevova transformace implementovaná plně v časové oblasti. Tato transformace také ukazuje, ľe některé rysy pozorované u aproximované diskrétní Zolotarevovy transformace jsou důsledkem pouľití Zolotarevových polynomů.This thesis is focused on selected problems of symmetrical Zolotarev polynomials and their use in spectral analysis. Basic properties of symmetrical Zolotarev polynomials including orthogonality are described. Also, the exploration of numerical properties of algorithms generating even Zolotarev polynomials is performed. As regards to the application of Zolotarev polynomials to spectral analysis the Approximated Discrete Zolotarev Transform is implemented so that it enables computing of zologram in real–time. Moreover, the Approximated Discrete Zolotarev Transform is modified to perform better in the analysis of damped exponential signals. And finally, a novel Discrete Zolotarev Transform implemented fully in the time domain is suggested. This transform also shows that some features observed using the Approximated Discrete Zolotarev Transform are a consequence of using Zolotarev polynomials

    Differentiation by integration using orthogonal polynomials, a survey

    Get PDF
    This survey paper discusses the history of approximation formulas for n-th order derivatives by integrals involving orthogonal polynomials. There is a large but rather disconnected corpus of literature on such formulas. We give some results in greater generality than in the literature. Notably we unify the continuous and discrete case. We make many side remarks, for instance on wavelets, Mantica's Fourier-Bessel functions and Greville's minimum R_alpha formulas in connection with discrete smoothing.Comment: 35 pages, 3 figures; minor corrections, subsection 3.11 added; accepted by J. Approx. Theor

    The Remez algorithm for trigonometric approximation of periodic functions

    Get PDF
    In this paper we present an implementation of the Remez algorithm for trigonometric minimax approximation of periodic functions. There are software packages which implement the Remez algorithm for even periodic functions. However, we believe that this paper describes the first implementation for the general periodic case. Our algorithm uses Chebfun to compute with periodic functions. For each iteration of the Remez algorithm, to construct the approximation, we use the second kind barycentric trigonometric interpolation formula instead of the first kind formula. To locate the maximum of the absolute error, instead of dense sampling of the error function, we use Chebfun’s eigenvalue based root finding method applied to the Chebyshev representation of the derivative of the underlying periodic function. Our algorithm has applications for designing FIR filters with real but asymmetric frequency responses
    corecore