526 research outputs found

    Uncovering Causality from Multivariate Hawkes Integrated Cumulants

    Get PDF
    We design a new nonparametric method that allows one to estimate the matrix of integrated kernels of a multivariate Hawkes process. This matrix not only encodes the mutual influences of each nodes of the process, but also disentangles the causality relationships between them. Our approach is the first that leads to an estimation of this matrix without any parametric modeling and estimation of the kernels themselves. A consequence is that it can give an estimation of causality relationships between nodes (or users), based on their activity timestamps (on a social network for instance), without knowing or estimating the shape of the activities lifetime. For that purpose, we introduce a moment matching method that fits the third-order integrated cumulants of the process. We show on numerical experiments that our approach is indeed very robust to the shape of the kernels, and gives appealing results on the MemeTracker database

    On photon statistics parametrized by a non-central Wishart random matrix

    Full text link
    In order to tackle parameter estimation of photocounting distributions, polykays of acting intensities are proposed as a new tool for computing photon statistics. As unbiased estimators of cumulants, polykays are computationally feasible thanks to a symbolic method recently developed in dealing with sequences of moments. This method includes the so-called method of moments for random matrices and results to be particularly suited to deal with convolutions or random summations of random vectors. The overall photocounting effect on a deterministic number of pixels is introduced. A random number of pixels is also considered. The role played by spectral statistics of random matrices is highlighted in approximating the overall photocounting distribution when acting intensities are modeled by a non-central Wishart random matrix. Generalized complete Bell polynomials are used in order to compute joint moments and joint cumulants of multivariate photocounters. Multivariate polykays can be successfully employed in order to approximate the multivariate Mendel-Poisson transform. Open problems are addressed at the end of the paper.Comment: 18 pages, in press in Journal of Statistical Planning and Inference, 201

    Rethinking LDA: moment matching for discrete ICA

    Get PDF
    We consider moment matching techniques for estimation in Latent Dirichlet Allocation (LDA). By drawing explicit links between LDA and discrete versions of independent component analysis (ICA), we first derive a new set of cumulant-based tensors, with an improved sample complexity. Moreover, we reuse standard ICA techniques such as joint diagonalization of tensors to improve over existing methods based on the tensor power method. In an extensive set of experiments on both synthetic and real datasets, we show that our new combination of tensors and orthogonal joint diagonalization techniques outperforms existing moment matching methods.Comment: 30 pages; added plate diagrams and clarifications, changed style, corrected typos, updated figures. in Proceedings of the 29-th Conference on Neural Information Processing Systems (NIPS), 201

    On a symbolic representation of non-central Wishart random matrices with applications

    Full text link
    By using a symbolic method, known in the literature as the classical umbral calculus, the trace of a non-central Wishart random matrix is represented as the convolution of the trace of its central component and of a formal variable involving traces of its non-centrality matrix. Thanks to this representation, the moments of this random matrix are proved to be a Sheffer polynomial sequence, allowing us to recover several properties. The multivariate symbolic method generalizes the employment of Sheffer representation and a closed form formula for computing joint moments and cumulants (also normalized) is given. By using this closed form formula and a combinatorial device, known in the literature as necklace, an efficient algorithm for their computations is set up. Applications are given to the computation of permanents as well as to the characterization of inherited estimators of cumulants, which turn useful in dealing with minors of non-central Wishart random matrices. An asymptotic approximation of generalized moments involving free probability is proposed.Comment: Journal of Multivariate Analysis (2014

    Natural statistics for spectral samples

    Get PDF
    Spectral sampling is associated with the group of unitary transformations acting on matrices in much the same way that simple random sampling is associated with the symmetric group acting on vectors. This parallel extends to symmetric functions, k-statistics and polykays. We construct spectral k-statistics as unbiased estimators of cumulants of trace powers of a suitable random matrix. Moreover we define normalized spectral polykays in such a way that when the sampling is from an infinite population they return products of free cumulants.Comment: Published in at http://dx.doi.org/10.1214/13-AOS1107 the Annals of Statistics (http://www.imstat.org/aos/) by the Institute of Mathematical Statistics (http://www.imstat.org

    The large-scale correlations of multi-cell densities and profiles, implications for cosmic variance estimates

    Full text link
    In order to quantify the error budget in the measured probability distribution functions of cell densities, the two-point statistics of cosmic densities in concentric spheres is investigated. Bias functions are introduced as the ratio of their two-point correlation function to the two-point correlation of the underlying dark matter distribution. They describe how cell densities are spatially correlated. They are computed here via the so-called large deviation principle in the quasi-linear regime. Their large-separation limit is presented and successfully compared to simulations for density and density slopes: this regime is shown to be rapidly reached allowing to get sub-percent precision for a wide range of densities and variances. The corresponding asymptotic limit provides an estimate of the cosmic variance of standard concentric cell statistics applied to finite surveys. More generally, no assumption on the separation is required for some specific moments of the two-point statistics, for instance when predicting the generating function of cumulants containing any powers of concentric densities in one location and one power of density at some arbitrary distance from the rest. This exact "one external leg" cumulant generating function is used in particular to probe the rate of convergence of the large-separation approximation.Comment: 17 pages, 10 figures, replaced to match the MNRAS accepted versio

    Integral correlation measures for multiparticle physics

    Full text link
    We report on a considerable improvement in the technique of measuring multiparticle correlations via integrals over correlation functions. A modification of measures used in the characterization of chaotic dynamical sytems permits fast and flexible calculation of factorial moments and cumulants as well as their differential versions. Higher order correlation integral measurements even of large multiplicity events such as encountered in heavy ion collisons are now feasible. The change from ``ordinary'' to ``factorial'' powers may have important consequences in other fields such as the study of galaxy correlations and Bose-Einstein interferometry.Comment: 23 pages, 6 tar-compressed uuencoded PostScript figures appended, preprint TPR-92-4

    A unifying framework for kk-statistics, polykays and their multivariate generalizations

    Get PDF
    Through the classical umbral calculus, we provide a unifying syntax for single and multivariate kk-statistics, polykays and multivariate polykays. From a combinatorial point of view, we revisit the theory as exposed by Stuart and Ord, taking into account the Doubilet approach to symmetric functions. Moreover, by using exponential polynomials rather than set partitions, we provide a new formula for kk-statistics that results in a very fast algorithm to generate such estimators.Comment: Published in at http://dx.doi.org/10.3150/07-BEJ6163 the Bernoulli (http://isi.cbs.nl/bernoulli/) by the International Statistical Institute/Bernoulli Society (http://isi.cbs.nl/BS/bshome.htm

    On the computation of classical, boolean and free cumulants

    Full text link
    This paper introduces a simple and computationally efficient algorithm for conversion formulae between moments and cumulants. The algorithm provides just one formula for classical, boolean and free cumulants. This is realized by using a suitable polynomial representation of Abel polynomials. The algorithm relies on the classical umbral calculus, a symbolic language introduced by Rota and Taylor in 1994, that is particularly suited to be implemented by using software for symbolic computations. Here we give a MAPLE procedure. Comparisons with existing procedures, especially for conversions between moments and free cumulants, as well as examples of applications to some well-known distributions (classical and free) end the paper.Comment: 14 pages. in press, Applied Mathematics and Computatio
    corecore