863 research outputs found

    Mitigation of H.264 and H.265 Video Compression for Reliable PRNU Estimation

    Full text link
    The photo-response non-uniformity (PRNU) is a distinctive image sensor characteristic, and an imaging device inadvertently introduces its sensor's PRNU into all media it captures. Therefore, the PRNU can be regarded as a camera fingerprint and used for source attribution. The imaging pipeline in a camera, however, involves various processing steps that are detrimental to PRNU estimation. In the context of photographic images, these challenges are successfully addressed and the method for estimating a sensor's PRNU pattern is well established. However, various additional challenges related to generation of videos remain largely untackled. With this perspective, this work introduces methods to mitigate disruptive effects of widely deployed H.264 and H.265 video compression standards on PRNU estimation. Our approach involves an intervention in the decoding process to eliminate a filtering procedure applied at the decoder to reduce blockiness. It also utilizes decoding parameters to develop a weighting scheme and adjust the contribution of video frames at the macroblock level to PRNU estimation process. Results obtained on videos captured by 28 cameras show that our approach increases the PRNU matching metric up to more than five times over the conventional estimation method tailored for photos

    Suppression of blocking artifact in compressed image

    Get PDF
    Image compression is actually major content for certain perspectives in the area of interactive media communication. Image processing is the mechanism for handling different kinds of images, processed images can be stored routinely and conveyance of such kind of images from one place to another place becomes simple to the user. By using image compression technique we are able to represent the image with lesser number of data bits. image compression execution can cut down the bandwidth and the volume of the data to be transmitted. (BDCT) block-based discrete cosine transform is long establish used transform for the two static and uninterrupted images. While we compress any kind of image by lossy type of image compression technique then there will be loss of data bits, we have to confrontation unwanted artifacts ringing and blocking artifacts and when we want to restore such kind of image then we face problem of blurring of images, which is sometimes called as the annoying artifacts problem near the block of the image. The recovered images from jpeg compression create blocking artifact near block boundaries of the image in high compression. Artifacts take on several forms in images. We are going to focus on blocking artifacts at medium and high level compression. Various types of images can be processed and we can diminish blocking artifacts up to tolerable level. Some standard techniques MPEG and JPEG are used in video and image processing field respectively for the compression. Lossy image compression technique is used in photographic images because loss of bits is tolerable, Since last few decades, image compression in real time applications has been a provocative field for image processing professionals. To recover original image decompression succeed by the different post processing techniques. High quality image communication with low-bit rate

    The Inhuman Overhang: On Differential Heterogenesis and Multi-Scalar Modeling

    Get PDF
    As a philosophical paradigm, differential heterogenesis offers us a novel descriptive vantage with which to inscribe Deleuze’s virtuality within the terrain of “differential becoming,” conjugating “pure saliences” so as to parse economies, microhistories, insurgencies, and epistemological evolutionary processes that can be conceived of independently from their representational form. Unlike Gestalt theory’s oppositional constructions, the advantage of this aperture is that it posits a dynamic context to both media and its analysis, rendering them functionally tractable and set in relation to other objects, rather than as sedentary identities. Surveying the genealogy of differential heterogenesis with particular interest in the legacy of Lautman’s dialectic, I make the case for a reading of the Deleuzean virtual that departs from an event-oriented approach, galvanizing Sarti and Citti’s dynamic a priori vis-à-vis Deleuze’s philosophy of difference. Specifically, I posit differential heterogenesis as frame with which to examine our contemporaneous epistemic shift as it relates to multi-scalar computational modeling while paying particular attention to neuro-inferential modes of inductive learning and homologous cognitive architecture. Carving a bricolage between Mark Wilson’s work on the “greediness of scales” and Deleuze’s “scales of reality”, this project threads between static ecologies and active externalism vis-à-vis endocentric frames of reference and syntactical scaffolding

    Subjective Assessment of Image Compression Artefacts on Stereoscopic Display

    Get PDF
    Image and video quality are important to depict any pictorial information vividly and correctly. With the advancement of technology, we can produce high-quality images and can display those in advanced high-resolution displays. But as high-quality images continue to increase in size, transmitting these exceeds the limited bandwidth of display links. To cope, we need to compress the images but desire that the user cannot perceive any difference between the compressed and uncompressed images. In my thesis, psychophysical experiments with a flicker paradigm were undertaken to do a subjective assessment of the visibility of compression artefacts of two sets of images with two codecs viewed on a stereoscopic display. For one set of images the result shows that artefacts can be silenced in some stereo images relative to 2D while testing with the other set of images was inconclusive. This thesis documented evidence for silencing of artefacts in 3D displays. Other differences between stereoscopic and 2D presentation can be predicted but were not observed here (perhaps due to floor effects). Further large-scale subjective assessment with challenging images may help to get a concrete conclusion

    An Investigation into the identification, reconstruction, and evidential value of thumbnail cache file fragments in unallocated space

    Get PDF
    ©Cranfield UniversityThis thesis establishes the evidential value of thumbnail cache file fragments identified in unallocated space. A set of criteria to evaluate the evidential value of thumbnail cache artefacts were created by researching the evidential constraints present in Forensic Computing. The criteria were used to evaluate the evidential value of live system thumbnail caches and thumbnail cache file fragments identified in unallocated space. Thumbnail caches can contain visual thumbnails and associated metadata which may be useful to an analyst during an investigation; the information stored in the cache may provide information on the contents of files and any user or system behaviour which interacted with the file. There is a standard definition of the purpose of a thumbnail cache, but not the structure or implementation; this research has shown that this has led to some thumbnail caches storing a variety of other artefacts such as network place names. The growing interest in privacy and security has led to an increase in user’s attempting to remove evidence of their activities; information removed by the user may still be available in unallocated space. This research adapted popular methods for the identification of contiguous files to enable the identification of single cluster sized fragments in Windows 7, Ubuntu, and Kubuntu. Of the four methods tested, none were able to identify each of the classifications with no false positive results; this result led to the creation of a new approach which improved the identification of thumbnail cache file fragments. After the identification phase, further research was conducted into the reassembly of file fragments; this reassembly was based solely on the potential thumbnail cache file fragments and structural and syntactical information. In both the identification and reassembly phases of this research image only file fragments proved the most challenging resulting in a potential area of continued future research. Finally this research compared the evidential value of live system thumbnail caches with identified and reassembled fragments. It was determined that both types of thumbnail cache artefacts can provide unique information which may assist with a digital investigation. ii This research has produced a set of criteria for determining the evidential value of thumbnail cache artefacts; it has also identified the structure and related user and system behaviour of popular operating system thumbnail cache implementations. This research has also adapted contiguous file identification techniques to single fragment identification and has developed an improved method for thumbnail cache file fragment identification. Finally this research has produced a proof of concept software tool for the automated identification and reassembly of thumbnail cache file fragments

    3D Reconstruction of Small Solar System Bodies using Rendered and Compressed Images

    Get PDF
    Synthetic image generation and reconstruction of Small Solar System Bodies and the influence of compression is becoming an important study topic because of the advent of small spacecraft in deep space missions. Most of these missions are fly-by scenarios, for example in the Comet Interceptor mission. Due to limited data budgets of small satellite missions, maximising scientific return requires investigating effects of lossy compression. A preliminary simulation pipeline had been developed that uses physics-based rendering in combination with procedural terrain generation to overcome limitations of currently used methods for image rendering like the Hapke model. The rendered Small Solar System Body images are combined with a star background and photometrically calibrated to represent realistic imagery. Subsequently, a Structure-from-Motion pipeline reconstructs three-dimensional models from the rendered images. In this work, the preliminary simulation pipeline was developed further into the Space Imaging Simulator for Proximity Operations software package and a compression package was added. The compression package was used to investigate effects of lossy compression on reconstructed models and the possible amount of data reduction of lossy compression to lossless compression. Several scenarios with varying fly-by distances ranging from 50 km to 400 km and body sizes of 1 km and 10 km were simulated and compressed with lossless and several quality levels of lossy compression using PNG and JPEG 2000 respectively. It was found that low compression ratios introduce artefacts resembling random noise while high compression ratios remove surface features. The random noise artefacts introduced by low compression ratios frequently increased the number of vertices and faces of the reconstructed three-dimensional model
    corecore