99,719 research outputs found

    Airborne photogrammetry and LIDAR for DSM extraction and 3D change detection over an urban area : a comparative study

    Get PDF
    A digital surface model (DSM) extracted from stereoscopic aerial images, acquired in March 2000, is compared with a DSM derived from airborne light detection and ranging (lidar) data collected in July 2009. Three densely built-up study areas in the city centre of Ghent, Belgium, are selected, each covering approximately 0.4 km(2). The surface models, generated from the two different 3D acquisition methods, are compared qualitatively and quantitatively as to what extent they are suitable in modelling an urban environment, in particular for the 3D reconstruction of buildings. Then the data sets, which are acquired at two different epochs t(1) and t(2), are investigated as to what extent 3D (building) changes can be detected and modelled over the time interval. A difference model, generated by pixel-wise subtracting of both DSMs, indicates changes in elevation. Filters are proposed to differentiate 'real' building changes from false alarms provoked by model noise, outliers, vegetation, etc. A final 3D building change model maps all destructed and newly constructed buildings within the time interval t(2) - t(1). Based on the change model, the surface and volume of the building changes can be quantified

    Enhancment of dense urban digital surface models from VHR optical satellite stereo data by pre-segmentation and object detection

    Get PDF
    The generation of digital surface models (DSM) of urban areas from very high resolution (VHR) stereo satellite imagery requires advanced methods. In the classical approach of DSM generation from stereo satellite imagery, interest points are extracted and correlated between the stereo mates using an area based matching followed by a least-squares sub-pixel refinement step. After a region growing the 3D point list is triangulated to the resulting DSM. In urban areas this approach fails due to the size of the correlation window, which smoothes out the usual steep edges of buildings. Also missing correlations as for partly – in one or both of the images – occluded areas will simply be interpolated in the triangulation step. So an urban DSM generated with the classical approach results in a very smooth DSM with missing steep walls, narrow streets and courtyards. To overcome these problems algorithms from computer vision are introduced and adopted to satellite imagery. These algorithms do not work using local optimisation like the area-based matching but try to optimize a (semi-)global cost function. Analysis shows that dynamic programming approaches based on epipolar images like dynamic line warping or semiglobal matching yield the best results according to accuracy and processing time. These algorithms can also detect occlusions – areas not visible in one or both of the stereo images. Beside these also the time and memory consuming step of handling and triangulating large point lists can be omitted due to the direct operation on epipolar images and direct generation of a so called disparity image fitting exactly on the first of the stereo images. This disparity image – representing already a sort of a dense DSM – contains the distances measured in pixels in the epipolar direction (or a no-data value for a detected occlusion) for each pixel in the image. Despite the global optimization of the cost function many outliers, mismatches and erroneously detected occlusions remain, especially if only one stereo pair is available. To enhance these dense DSM – the disparity image – a pre-segmentation approach is presented in this paper. Since the disparity image is fitting exactly on the first of the two stereo partners (beforehand transformed to epipolar geometry) a direct correlation between image pixels and derived heights (the disparities) exist. This feature of the disparity image is exploited to integrate additional knowledge from the image into the DSM. This is done by segmenting the stereo image, transferring the segmentation information to the DSM and performing a statistical analysis on each of the created DSM segments. Based on this analysis and spectral information a coarse object detection and classification can be performed and in turn the DSM can be enhanced. After the description of the proposed method some results are shown and discussed

    Case study 2. Model validation using existing data from PV generation on selected New Zealand schools

    Get PDF
    Solar energy is abundant, free and non-polluting. Solar energy can offset the consumption of fossil fuels, greenhouse gas emission reduction targets and contribute to meeting the fast-growing energy demands. The use of solar energy for electricity generation from photovoltaic (PV) panels has increased but is still not a widely utilised technology in New Zealand. This research approximated the potential solar energy that could be harvested from the rooftops of existing residential buildings in a case study city. This research is divided into two work strands, each involving a case study. The first strand investigated if a model could be developed, using existing data sources to determine the solar harvesting potential from the rooftops of existing residential buildings. The second strand involved the validation of the solar PV prediction model proposed in the first strand of the research, to test the reliability of the modelling outcomes. Invercargill City was selected as the study city for case study 1. Invercargill is the southernmost city in New Zealand so represents a worst case scenario. The method involved merging computer-simulation of solar energy produced from PV modelling and mapping incoming solar radiation data from north facing residential rooftop area. The work utilised New Zealand statistical census map of population and dwelling data, as well as digital aerial map to quantify the efficient roof surface area available for PV installations. The solar PV potential was calculated using existing formulas to investigate the contribution of roof area to the solar PV potential in buildings using roof area and population relationship. The estimated solar PV potential was 82,947,315 kWh per year generated from the total solar efficient roof surface area of 740,504 m². This equates to approximately 60.8% of the residential electricity used in Invercargill’s urban area, based on the 7,700 kWh typical annual electricity consumptions per household. The result represents an immense opportunity to harvest sustainable energy from Invercargill’s residential rooftops. To verify the accuracy of the developed method for predicting the PV outputs, the model was applied to actual generation data from grid-connected solar photovoltaic (PV) systems that are installed in New Zealand schools under the Schoolgen programme (Case Study 2). A total of 66 Schoolgen PV rooftop models were incorporated in the analysis. At this stage, the actual system parameters including size, panel type and efficiency were included in the analysis. The performance prediction and analysis outcome showed the parameters and operating conditions that affect the amount of energy generated by the PV systems. This part of the research showed the area where the PV model can be improved. The predicted generation from the model was found to be lower than the actual generation data. Schoolgen systems operating at over 0.75 performance ratio were found to be underestimated. This indicated that most Schoolgen PV systems were operating at higher capacities than predicted by the default value of system losses. The analysis demonstrated the effects of PV technology type, site orientation, direction and tilted angle of the panels on the ability to generate expected amount of potential capacity based on solar resource availability in different site scenarios. This in turn has provided more in depth analysis of the research and served to expand the area for improvements in the design of the model

    Assessment of a photogrammetric approach for urban DSM extraction from tri-stereoscopic satellite imagery

    Get PDF
    Built-up environments are extremely complex for 3D surface modelling purposes. The main distortions that hamper 3D reconstruction from 2D imagery are image dissimilarities, concealed areas, shadows, height discontinuities and discrepancies between smooth terrain and man-made features. A methodology is proposed to improve automatic photogrammetric extraction of an urban surface model from high resolution satellite imagery with the emphasis on strategies to reduce the effects of the cited distortions and to make image matching more robust. Instead of a standard stereoscopic approach, a digital surface model is derived from tri-stereoscopic satellite imagery. This is based on an extensive multi-image matching strategy that fully benefits from the geometric and radiometric information contained in the three images. The bundled triplet consists of an IKONOS along-track pair and an additional near-nadir IKONOS image. For the tri-stereoscopic study a densely built-up area, extending from the centre of Istanbul to the urban fringe, is selected. The accuracy of the model extracted from the IKONOS triplet, as well as the model extracted from only the along-track stereopair, are assessed by comparison with 3D check points and 3D building vector data

    Ground Profile Recovery from Aerial 3D LiDAR-based Maps

    Get PDF
    The paper presents the study and implementation of the ground detection methodology with filtration and removal of forest points from LiDAR-based 3D point cloud using the Cloth Simulation Filtering (CSF) algorithm. The methodology allows to recover a terrestrial relief and create a landscape map of a forestry region. As the proof-of-concept, we provided the outdoor flight experiment, launching a hexacopter under a mixed forestry region with sharp ground changes nearby Innopolis city (Russia), which demonstrated the encouraging results for both ground detection and methodology robustness.Comment: 8 pages, FRUCT-2019 conferenc

    Prototyping Information Visualization in 3D City Models: a Model-based Approach

    Full text link
    When creating 3D city models, selecting relevant visualization techniques is a particularly difficult user interface design task. A first obstacle is that current geodata-oriented tools, e.g. ArcGIS, have limited 3D capabilities and limited sets of visualization techniques. Another important obstacle is the lack of unified description of information visualization techniques for 3D city models. If many techniques have been devised for different types of data or information (wind flows, air quality fields, historic or legal texts, etc.) they are generally described in articles, and not really formalized. In this paper we address the problem of visualizing information in (rich) 3D city models by presenting a model-based approach for the rapid prototyping of visualization techniques. We propose to represent visualization techniques as the composition of graph transformations. We show that these transformations can be specified with SPARQL construction operations over RDF graphs. These specifications can then be used in a prototype generator to produce 3D scenes that contain the 3D city model augmented with data represented using the desired technique.Comment: Proc. of 3DGeoInfo 2014 Conference, Dubai, November 201
    • …
    corecore