18 research outputs found

    Applications of Nature-Inspired Algorithms for Dimension Reduction: Enabling Efficient Data Analytics

    Get PDF
    In [1], we have explored the theoretical aspects of feature selection and evolutionary algorithms. In this chapter, we focus on optimization algorithms for enhancing data analytic process, i.e., we propose to explore applications of nature-inspired algorithms in data science. Feature selection optimization is a hybrid approach leveraging feature selection techniques and evolutionary algorithms process to optimize the selected features. Prior works solve this problem iteratively to converge to an optimal feature subset. Feature selection optimization is a non-specific domain approach. Data scientists mainly attempt to find an advanced way to analyze data n with high computational efficiency and low time complexity, leading to efficient data analytics. Thus, by increasing generated/measured/sensed data from various sources, analysis, manipulation and illustration of data grow exponentially. Due to the large scale data sets, Curse of dimensionality (CoD) is one of the NP-hard problems in data science. Hence, several efforts have been focused on leveraging evolutionary algorithms (EAs) to address the complex issues in large scale data analytics problems. Dimension reduction, together with EAs, lends itself to solve CoD and solve complex problems, in terms of time complexity, efficiently. In this chapter, we first provide a brief overview of previous studies that focused on solving CoD using feature extraction optimization process. We then discuss practical examples of research studies are successfully tackled some application domains, such as image processing, sentiment analysis, network traffics / anomalies analysis, credit score analysis and other benchmark functions/data sets analysis

    Binary Multi-Verse Optimization (BMVO) Approaches for Feature Selection

    Get PDF
    Multi-Verse Optimization (MVO) is one of the newest meta-heuristic optimization algorithms which imitates the theory of Multi-Verse in Physics and resembles the interaction among the various universes. In problem domains like feature selection, the solutions are often constrained to the binary values viz. 0 and 1. With regard to this, in this paper, binary versions of MVO algorithm have been proposed with two prime aims: firstly, to remove redundant and irrelevant features from the dataset and secondly, to achieve better classification accuracy. The proposed binary versions use the concept of transformation functions for the mapping of a continuous version of the MVO algorithm to its binary versions. For carrying out the experiments, 21 diverse datasets have been used to compare the Binary MVO (BMVO) with some binary versions of existing metaheuristic algorithms. It has been observed that the proposed BMVO approaches have outperformed in terms of a number of features selected and the accuracy of the classification process

    A Low Cost Image Steganalysis by Using Domain Adaptation

    Get PDF
    Information hiding and data encryption are used widely to protect data and information from anonymous access. In digital world, hiding and encrypting of the desired data into an image is a smart way to protect information with a low cost. In the digital images, steganalysis is a known method to distinguish between clean and stego images. Most of recent researches in this scope exploit feature reduction algorithms to improve the performance of correct detections. However, dimension reduction alone could not tackle the problem of steganalysis because the properties of stego images change during the steganalysis process. In this work, it is intended to propose an Image Steganalysis using visual Domain Adaptation (ISDA), which this steganalysis target images to distinguish across stego and clean images. ISDA is a dimensionality reduction approach that considers the image drifts during the steganography process in the steganalysis of target images. Moreover, ISDA employs domain invariant clustering in an embedded representation to cluster clean and stego images in the reduced subspace. The results on benchmark datasets demonstrate that ISDA thoroughly outperforms all of the state of the art methods on validation parameters, accuracy of detection and time complexit

    Evolutionary Computation, Optimization and Learning Algorithms for Data Science

    Get PDF
    A large number of engineering, science and computational problems have yet to be solved in a computationally efficient way. One of the emerging challenges is how evolving technologies grow towards autonomy and intelligent decision making. This leads to collection of large amounts of data from various sensing and measurement technologies, e.g., cameras, smart phones, health sensors, smart electricity meters, and environment sensors. Hence, it is imperative to develop efficient algorithms for generation, analysis, classification, and illustration of data. Meanwhile, data is structured purposefully through different representations, such as large-scale networks and graphs. We focus on data science as a crucial area, specifically focusing on a curse of dimensionality (CoD) which is due to the large amount of generated/sensed/collected data. This motivates researchers to think about optimization and to apply nature-inspired algorithms, such as evolutionary algorithms (EAs) to solve optimization problems. Although these algorithms look un-deterministic, they are robust enough to reach an optimal solution. Researchers do not adopt evolutionary algorithms unless they face a problem which is suffering from placement in local optimal solution, rather than global optimal solution. In this chapter, we first develop a clear and formal definition of the CoD problem, next we focus on feature extraction techniques and categories, then we provide a general overview of meta-heuristic algorithms, its terminology, and desirable properties of evolutionary algorithms

    Stock market prediction using machine learning classifiers and social media, news

    Get PDF
    Accurate stock market prediction is of great interest to investors; however, stock markets are driven by volatile factors such as microblogs and news that make it hard to predict stock market index based on merely the historical data. The enormous stock market volatility emphasizes the need to effectively assess the role of external factors in stock prediction. Stock markets can be predicted using machine learning algorithms on information contained in social media and financial news, as this data can change investors’ behavior. In this paper, we use algorithms on social media and financial news data to discover the impact of this data on stock market prediction accuracy for ten subsequent days. For improving performance and quality of predictions, feature selection and spam tweets reduction are performed on the data sets. Moreover, we perform experiments to find such stock markets that are difficult to predict and those that are more influenced by social media and financial news. We compare results of different algorithms to find a consistent classifier. Finally, for achieving maximum prediction accuracy, deep learning is used and some classifiers are ensembled. Our experimental results show that highest prediction accuracies of 80.53% and 75.16% are achieved using social media and financial news, respectively. We also show that New York and Red Hat stock markets are hard to predict, New York and IBM stocks are more influenced by social media, while London and Microsoft stocks by financial news. Random forest classifier is found to be consistent and highest accuracy of 83.22% is achieved by its ensemble
    corecore