239 research outputs found

    SAR Ship Detection for Rough Sea Conditions

    Get PDF
    In the Synthetic Aperture Radar (SAR) framework many detection algorithms and techniques have been published in the recent literature; however the detection of vessels whose dimensions are in the order of the image spatial resolution is still challenging in rough sea state scenarios. This issue is addressed in the paper presented here by comparing rationale and performance of two detectors developed by the same authors: the Generalized Likelihood Ratio Test (GLRT) and the Intensity Dual-Polarization Ratio Anomaly Detector (iDPolRAD). Both detectors are tested on a dual-polarization VV/VH Interferometric Wide Swath Sentinel-1 image acquired over the Suruga Bay on the Pacific Coast of Japan. The theory is presented here and the two detectors are compared against the Cell Average-Constant False Alarm Algorithm (CA-CFAR) showing both better performance than CFAR in terms of false alarms rejection

    Robust CFAR Detector Based on Truncated Statistics for Polarimetric Synthetic Aperture Radar

    Get PDF
    Constant false alarm rate (CFAR) algorithms using a local training window are widely used for ship detection with synthetic aperture radar (SAR) imagery. However, when the density of the targets is high, such as in busy shipping lines and crowded harbors, the background statistics may be contaminated by the presence of nearby targets in the training window. Recently, a robust CFAR detector based on truncated statistics (TS) was proposed. However, the truncation of data in the format of polarimetric covariance matrices is much more complicated with respect to the truncation of intensity (single polarization) data. In this article, a polarimetric whitening filter TS CFAR (PWF-TS-CFAR) is proposed to estimate the background parameters accurately in the contaminated sea clutter for PolSAR imagery. The CFAR detector uses a polarimetric whitening filter (PWF) to turn the multidimensional problem to a 1-D case. It uses truncation to exclude possible statistically interfering outliers and uses TS to model the remaining background samples. The algorithm does not require prior knowledge of the interfering targets, and it is performed iteratively and adaptively to derive better estimates of the polarimetric covariance matrix (although this is computationally expensive). The PWF-TS-CFAR detector provides accurate background clutter modeling, a stable false alarm property, and improves the detection performance in high-target-density situations. RadarSat2 data are used to verify our derivations, and the results are in line with the theory

    Knowledge-aided Bayesian covariance matrix estimation in compound-Gaussian clutter

    Get PDF
    We address the problem of estimating a covariance matrix R using K samples zk whose covariance matrices are kR, where k are random variables. This problem naturally arises in radar applications in the case of compound-Gaussian clutter. In contrast to the conventional approach which consists in considering R as a deterministic quantity, a knowledge-aided (KA) approach is advocated here, where R is assumed to be a random matrix with some prior distribution. The posterior distribution of R is derived. Since it does not lead to a closed-form expression for the minimum mean-square error (MMSE) estimate of R, both R and k are estimated using a Gibbs-sampling strategy. The maximum a posteriori (MAP) estimator ofR is also derived. It is shown that it obeys an implicit equation which can be solved through an iterative procedure, similarly to the case of deterministic ks, except that KA is now introduced in the iterative scheme. The new estimators are shown to improve over conventional estimators, especially in small sample support

    Adaptive subspace detectors

    Get PDF
    Includes bibliographical references.In this paper, we use the theory of generalized likelihood ratio tests (GLRTs) to adapt the matched subspace detectors (MSDs) of [1] and [2] to unknown noise covariance matrices. In so doing, we produce adaptive MSDs that may be applied to signal detection for radar, sonar, and data communication. We call the resulting detectors adaptive subspace detectors (ASDs). These include Kelly's GLRT and the adaptive cosine estimator (ACE) of [6] and [19] for scenarios in which the scaling of the test data may deviate from that of the training data. We then present a unified analysis of the statistical behavior of the entire class of ASDs, obtaining statistically identical decompositions in which each ASD is simply decomposed into the nonadaptive matched filter, the nonadaptive cosine or t-statistic, and three other statistically independent random variables that account for the performance-degrading effects of limited training data.This work was supported by the Office of Naval Research under Contracts N00014-89-J-1070 and N00014-00-1-0033, and by the National Science Foundation under Contracts MIP-9529050 and ECS 9979400

    Polarimetric SAR Change Detection with the Complex Hotelling-Lawley Trace Statistic

    Get PDF
    Accepted manuscript version. Published version at http://dx.doi.org/10.1109/TGRS.2016.2532320.In this paper, we propose a new test statistic for unsupervised change detection in polarimetric radar images. We work with multilook complex covariance matrix data, whose underlying model is assumed to be the scaled complex Wishart distribution. We use the complex-kind Hotelling-Lawley trace statistic for measuring the similarity of two covariance matrices. The distribution of the Hotelling-Lawley trace statistic is ap- proximated by a Fisher-Snedecor distribution, which is used to define the significance level of a false alarm rate regulated change detector. Experiments on simulated and real PolSAR data sets demonstrate that the proposed change detection method gives detections rates and error rates that are comparable with the generalized likelihood ratio test

    Adaptive detection of distributed targets in compound-Gaussian noise without secondary data: A Bayesian approach

    Get PDF
    In this paper, we deal with the problem of adaptive detection of distributed targets embedded in colored noise modeled in terms of a compound-Gaussian process and without assuming that a set of secondary data is available.The covariance matrices of the data under test share a common structure while having different power levels. A Bayesian approach is proposed here, where the structure and possibly the power levels are assumed to be random, with appropriate distributions. Within this framework we propose GLRT-based and ad-hoc detectors. Some simulation studies are presented to illustrate the performances of the proposed algorithms. The analysis indicates that the Bayesian framework could be a viable means to alleviate the need for secondary data, a critical issue in heterogeneous scenarios
    corecore