21 research outputs found

    On the Domination Chain of m by n Chess Graphs

    Get PDF
    A survey of the six domination chain parameters for both square and rectangular chess boards are discussed

    Queen\u27s domination using border squares and (\u3ci\u3eA\u3c/i\u3e,\u3ci\u3eB\u3c/i\u3e)-restricted domination

    Get PDF
    In this paper we introduce a variant on the long studied, highly entertaining, and very difficult problem of determining the domination number of the queen\u27s chessboard graph, that is, determining how few queens are needed to protect all of the squares of a k by k chessboard. Motivated by the problem of minimum redundance domination, we consider the problem of determining how few queens restricted to squares on the border can be used to protect the entire chessboard. We give exact values of border-queens required for the k by k chessboard when 1≤k≤13. For the general case, we present a lower bound of k(2-9/2k-√(8k2-49k+49)/2k) and an upper bound of k-2. For k=3t+1 we improve the upper bound to 2t+1 if 3t+1 is odd and 2t if 3t+1 is even. We generalize this problem to (A,B)-restricted parameters for vertex subsets A and B of V(G) where, for example, one must use only vertices in A to dominate all of B. Defining upper and lower parameters for independence, domination, and irredundance, we present a generalization of the domination chain of inequalities relating these parameters

    FROM IRREDUNDANCE TO ANNIHILATION: A BRIEF OVERVIEW OF SOME DOMINATION PARAMETERS OF GRAPHS

    Get PDF
    Durante los últimos treinta años, el concepto de dominación en grafos ha levantado un interés impresionante. Una bibliografía reciente sobre el tópico contiene más de 1200 referencias y el número de definiciones nuevas está creciendo continuamente. En vez de intentar dar un catálogo de todas ellas, examinamos las nociones más clásicas e importantes (tales como dominación independiente, dominación irredundante, k-cubrimientos, conjuntos k-dominantes, conjuntos Vecindad Perfecta, ...) y algunos de los resultados más significativos.   PALABRAS CLAVES: Teoría de grafos, Dominación.   ABSTRACT During the last thirty years, the concept of domination in graphs has generated an impressive interest. A recent bibliography on the subject contains more than 1200 references and the number of new definitions is continually increasing. Rather than trying to give a catalogue of all of them, we survey the most classical and important notions (as independent domination, irredundant domination, k-coverings, k-dominating sets, Perfect Neighborhood sets, ...) and some of the most significant results.   KEY WORDS: Graph theory, Domination

    The queen's domination problem

    Get PDF
    The queens graph Qn has the squares of then x n chessboard as its vertices; two squares are adjacent if they are in the same row, column or diagonal. A set D of squares of Qn is a dominating set for Qn if every square of Qn is either in D or adjacent to a square in D. If no two squares of a set I are adjacent then I is an independent set. Let 'J'(Qn) denote the minimum size of a dominating set of Qn and let i(Qn) denote the minimum size of an independent dominating set of Qn. The main purpose of this thesis is to determine new values for'!'( Qn). We begin by discussing the most important known lower bounds for 'J'(Qn) in Chapter 2. In Chapter 3 we state the hitherto known values of 'J'(Qn) and explain how they were determined. We briefly explain how to obtain all non-isomorphic minimum dominating sets for Q8 (listed in Appendix A). It is often useful to study these small dominating sets to look for patterns and possible generalisations. In Chapter 4 we determine new values for')' ( Q69 ) , ')' ( Q77 ), ')' ( Q30 ) and i (Q45 ) by considering asymmetric and symmetric dominating sets for the case n = 4k + 1 and in Chapter 5 we search for dominating sets for the case n = 4k + 3, thus determining the values of 'I' ( Q19) and 'I' (Q31 ). In Chapter 6 we prove the upper bound')' (Qn) :s; 1 8 5n + 0 (1), which is better than known bounds in the literature and in Chapter 7 we consider dominating sets on hexagonal boards. Finally, in Chapter 8 we determine the irredundance number for the hexagonal boards H5 and H7, as well as for Q5 and Q6Mathematical SciencesD.Phil. (Applied Mathematics

    An upper bound for the minimum number of queens covering the n×n chessboard

    Get PDF
    AbstractWe show that the minimum number of queens required to cover the n×n chessboard is at most 815n+O(1)

    Paired and Total Domination on the Queen\u27s Graph.

    Get PDF
    The Queen’s domination problem has a long and rich history. The problem can be simply stated as: What is the minimum number of queens that can be placed on a chessboard so that all squares are attacked or occupied by a queen? The problem has been expanded to include not only the standard 8x8 board, but any rectangular m×n sized board. In this thesis, we consider both paired and total domination versions of this renowned problem

    Master index to volumes 251-260

    Get PDF

    Parameters related to fractional domination in graphs.

    Get PDF
    Thesis (M.Sc.)-University of Natal, 1995.The use of characteristic functions to represent well-known sets in graph theory such as dominating, irredundant, independent, covering and packing sets - leads naturally to fractional versions of these sets and corresponding fractional parameters. Let S be a dominating set of a graph G and f : V(G)~{0,1} the characteristic function of that set. By first translating the restrictions which define a dominating set from a set-based to a function-based form, and then allowing the function f to map the vertex set to the unit closed interval, we obtain the fractional generalisation of the dominating set S. In chapter 1, known domination-related parameters and their fractional generalisations are introduced, relations between them are investigated, and Gallai type results are derived. Particular attention is given to graphs with symmetry and to products of graphs. If instead of replacing the function f : V(G)~{0,1} with a function which maps the vertex set to the unit closed interval we introduce a function f' which maps the vertex set to {0, 1, ... ,k} (where k is some fixed, non-negative integer) and a corresponding change in the restrictions on the dominating set, we obtain a k-dominating function. In chapter 2 corresponding k-parameters are considered and are related to the classical and fractional parameters. The calculations of some well known fractional parameters are expressed as optimization problems involving the k- parameters. An e = 1 function is a function f : V(G)~[0,1] which obeys the restrictions that (i) every non-isolated vertex u is adjacent to some vertex v such that f(u)+f(v) = 1, and every isolated vertex w has f(w) = 1. In chapter 3 a theory of e = 1 functions and parameters is developed. Relationships are traced between e = 1 parameters and those previously introduced, some Gallai type results are derived for the e = 1 parameters, and e = 1 parameters are determined for several classes of graphs. The e = 1 theory is applied to derive new results about classical and fractional domination parameters

    Master index of volumes 161–170

    Get PDF
    corecore