4,992 research outputs found

    Segmentation of Intensity Inhomogeneous Brain MR Images Using Active Contours

    Get PDF
    Segmentation of intensity inhomogeneous regions is a well-known problem in image analysis applications. This paper presents a region-based active contour method for image segmentation, which properly works in the context of intensity inhomogeneity problem. The proposed region-based active contour method embeds both region and gradient information unlike traditional methods. It contains mainly two terms, area and length, in which the area term practices a new region-based signed pressure force (SPF) function, which utilizes mean values from a certain neighborhood using the local binary fitted (LBF) energy model. In turn, the length term uses gradient information. The novelty of our method is to locally compute new SPF function, which uses local mean values and is able to detect boundaries of the homogenous regions. Finally, a truncated Gaussian kernel is used to regularize the level set function, which not only regularizes it but also removes the need of computationally expensive reinitialization. The proposed method targets the segmentation problem of intensity inhomogeneous images and reduces the time complexity among locally computed active contour methods. The experimental results show that the proposed method yields better segmentation result as well as less time complexity compared with the state-of-the-art active contour methods

    An Inhomogeneous Bayesian Texture Model for Spatially Varying Parameter Estimation

    No full text
    In statistical model based texture feature extraction, features based on spatially varying parameters achievehigher discriminative performances compared to spatially constant parameters. In this paper we formulate anovel Bayesian framework which achieves texture characterization by spatially varying parameters based onGaussian Markov random fields. The parameter estimation is carried out by Metropolis-Hastings algorithm.The distributions of estimated spatially varying parameters are then used as successful discriminant texturefeatures in classification and segmentation. Results show that novel features outperform traditional GaussianMarkov random field texture features which use spatially constant parameters. These features capture bothpixel spatial dependencies and structural properties of a texture giving improved texture features for effectivetexture classification and segmentation
    • ā€¦
    corecore