7,574 research outputs found

    Energy performance forecasting of residential buildings using fuzzy approaches

    Get PDF
    The energy consumption used for domestic purposes in Europe is, to a considerable extent, due to heating and cooling. This energy is produced mostly by burning fossil fuels, which has a high negative environmental impact. The characteristics of a building are an important factor to determine the necessities of heating and cooling loads. Therefore, the study of the relevant characteristics of the buildings, regarding the heating and cooling needed to maintain comfortable indoor air conditions, could be very useful in order to design and construct energy-efficient buildings. In previous studies, different machine-learning approaches have been used to predict heating and cooling loads from the set of variables: relative compactness, surface area, wall area, roof area, overall height, orientation, glazing area and glazing area distribution. However, none of these methods are based on fuzzy logic. In this research, we study two fuzzy logic approaches, i.e., fuzzy inductive reasoning (FIR) and adaptive neuro fuzzy inference system (ANFIS), to deal with the same problem. Fuzzy approaches obtain very good results, outperforming all the methods described in previous studies except one. In this work, we also study the feature selection process of FIR methodology as a pre-processing tool to select the more relevant variables before the use of any predictive modelling methodology. It is proven that FIR feature selection provides interesting insights into the main building variables causally related to heating and cooling loads. This allows better decision making and design strategies, since accurate cooling and heating load estimations and correct identification of parameters that affect building energy demands are of high importance to optimize building designs and equipment specifications.Peer ReviewedPostprint (published version

    Review of Nature-Inspired Forecast Combination Techniques

    Get PDF
    Effective and efficient planning in various areas can be significantly supported by forecasting a variable like an economy growth rate or product demand numbers for a future point in time. More than one forecast for the same variable is often available, leading to the question whether one should choose one of the single models or combine several of them to obtain a forecast with improved accuracy. In the almost 40 years of research in the area of forecast combination, an impressive amount of work has been done. This paper reviews forecast combination techniques that are nonlinear and have in some way been inspired by nature

    Fruit production forecasting by neuro-fuzzy techniques

    Get PDF
    Neuro-fuzzy techniques are finding a practical application in many fields such as in model identification and forecasting of linear and non-linear systems. This paper presents a neuro-fuzzy model for forecasting the fruit production of some agriculture products (olives, lemons, oranges, cherries and pistachios). The model utilizes a time series of yearly data. The fruit forecasting is based on Adaptive Neural Fuzzy Inference System (ANFIS). ANFIS uses a combination of the least-squares method and the backprobagation gradient descent method to estimate the optimal food forecast parameters for each year. The results are compared to those of an Autoregressive (AR) model and an Autoregressive Moving Average model (ARMA).Fruit forecasting, neuro-fuzzy, ANFIS, AR, ARMA, forecasting, fruit production, Agricultural Finance, Crop Production/Industries,

    Development of Neurofuzzy Architectures for Electricity Price Forecasting

    Get PDF
    In 20th century, many countries have liberalized their electricity market. This power markets liberalization has directed generation companies as well as wholesale buyers to undertake a greater intense risk exposure compared to the old centralized framework. In this framework, electricity price prediction has become crucial for any market player in their decision‐making process as well as strategic planning. In this study, a prototype asymmetric‐based neuro‐fuzzy network (AGFINN) architecture has been implemented for short‐term electricity prices forecasting for ISO New England market. AGFINN framework has been designed through two different defuzzification schemes. Fuzzy clustering has been explored as an initial step for defining the fuzzy rules while an asymmetric Gaussian membership function has been utilized in the fuzzification part of the model. Results related to the minimum and maximum electricity prices for ISO New England, emphasize the superiority of the proposed model over well‐established learning‐based models

    Study of Discrete Choice Models and Adaptive Neuro-Fuzzy Inference System in the Prediction of Economic Crisis Periods in USA

    Get PDF
    In this study two approaches are applied for the prediction of the economic recession or expansion periods in USA. The first approach includes Logit and Probit models and the second is an Adaptive Neuro-Fuzzy Inference System (ANFIS) with Gaussian and Generalized Bell membership functions. The in-sample period 1950-2006 is examined and the forecasting performance of the two approaches is evaluated during the out-of sample period 2007-2010. The estimation results show that the ANFIS model outperforms the Logit and Probit model. This indicates that neuro-fuzzy model provides a better and more reliable signal on whether or not a financial crisis will take place.ANFIS, Discrete Choice Models, Error Back-propagation, Financial Crisis, Fuzzy Logic, US Economy
    • 

    corecore