13,655 research outputs found

    On the suitability and development of layout templates for analog layout reuse and layout-aware synthesis

    Get PDF
    Accelerating the synthesis of increasingly complex analog integrated circuits is key to bridge the widening gap between what we can integrate and what we can design while meeting ever-tightening time-to-market constraints. It is a well-known fact in the semiconductor industry that such goal can only be attained by means of adequate CAD methodologies, techniques, and accompanying tools. This is particularly important in analog physical synthesis (a.k.a. layout generation), where large sensitivities of the circuit performances to the many subtle details of layout implementation (device matching, loading and coupling effects, reliability, and area features are of utmost importance to analog designers), render complete automation a truly challenging task. To approach the problem, two directions have been traditionally considered, knowledge-based and optimization-based, both with their own pros and cons. Besides, recently reported solutions oriented to speed up the overall design flow by means of reuse-based practices or by cutting off time-consuming, error-prone spins between electrical and layout synthesis (a technique known as layout-aware synthesis), rely on a outstandingly rapid yet efficient layout generation method. This paper analyses the suitability of procedural layout generation based on templates (a knowledge-based approach) by examining the requirements that both layout reuse and layout-aware solutions impose, and how layout templates face them. The ability to capture the know-how of experienced layout designers and the turnaround times for layout instancing are considered main comparative aspects in relation to other layout generation approaches. A discussion on the benefit-cost trade-off of using layout templates is also included. In addition to this analysis, the paper delves deeper into systematic techniques to develop fully reusable layout templates for analog circuits, either for a change of the circuit sizing (i.e., layout retargeting) or a change of the fabrication process (i.e., layout migration). Several examples implemented with the Cadence's Virtuoso tool suite are provided as demonstration of the paper's contributions.Ministerio de Educación y Ciencia TEC2004-0175

    Geometrically-constrained, parasitic-aware synthesis of analog ICs

    Get PDF
    In order to speed up the design process of analog ICs, iterations between different design stages should be avoided as much as possible. More specifically, spins between electrical and physical synthesis should be reduced for this is a very time-consuming task: if circuit performance including layout-induced degradations proves unacceptable, a re-design cycle must be entered, and electrical, physical, or both synthesis processes, would have to be repeated. It is also worth noting that if geometric optimization (e.g., area minimization) is undertaken after electrical synthesis, it may add up as another source of unexpected degradation of the circuit performance due to the impact of the geometric variables (e.g., transistor folds) on the device and the routing parasitic values. This awkward scenario is caused by the complete separation of said electrical and physical synthesis, a design practice commonly followed so far. Parasitic-aware synthesis, consisting in including parasitic estimates to the circuit netlist directly during electrical synthesis, has been proposed as solution. While most of the reported contributions either tackle parasitic-aware synthesis without paying special attention to geometric optimization or approach both issues only partially, this paper addresses the problem in a unified way. In what has been called layout-aware electrical synthesis, a simulation-based optimization algorithm explores the design space with geometric variables constrained to meet certain user-defined goals, which provides reliable estimates of layout-induced parasitics at each iteration, and, thereby, accurate evaluation of the circuit ultimate performance. This technique, demonstrated here through several design examples, requires knowing layout details beforehand; to facilitate this, procedural layout generation is used as physical synthesis approach due to its rapidness and ability to capture analog layout know-how.Ministerio de Educación y Ciencia TEC2004-0175

    A procedural method for the efficient implementation of full-custom VLSI designs

    Get PDF
    An imbedded language system for the layout of very large scale integration (VLSI) circuits is examined. It is shown that through the judicious use of this system, a large variety of circuits can be designed with circuit density and performance comparable to traditional full-custom design methods, but with design costs more comparable to semi-custom design methods. The high performance of this methodology is attributable to the flexibility of procedural descriptions of VLSI layouts and to a number of automatic and semi-automatic tools within the system

    Correlation analysis of the transcriptome of growing leaves with mature leaf parameters in a maize RIL population

    Get PDF
    Background: To sustain the global requirements for food and renewable resources, unraveling the molecular networks underlying plant growth is becoming pivotal. Although several approaches to identify genes and networks involved in final organ size have been proven successful, our understanding remains fragmentary. Results: Here, we assessed variation in 103 lines of the Zea mays B73xH99 RIL population for a set of final leaf size and whole shoot traits at the seedling stage, complemented with measurements capturing growth dynamics, and cellular measurements. Most traits correlated well with the size of the division zone, implying that the molecular basis of final leaf size is already defined in dividing cells of growing leaves. Therefore, we searched for association between the transcriptional variation in dividing cells of the growing leaf and final leaf size and seedling biomass, allowing us to identify genes and processes correlated with the specific traits. A number of these genes have a known function in leaf development. Additionally, we illustrated that two independent mechanisms contribute to final leaf size, maximal growth rate and the duration of growth. Conclusions: Untangling complex traits such as leaf size by applying in-depth phenotyping allows us to define the relative contributions of the components and their mutual associations, facilitating dissection of the biological processes and regulatory networks underneath
    corecore