3,826 research outputs found

    Automatic detection of lung nodules in CT datasets based on stable 3D mass–spring models

    Get PDF
    We propose a computer-aided detection (CAD) system which can detect small-sized (from 3 mm) pulmonary nodules in spiral CT scans. A pulmonary nodule is a small lesion in the lungs, round-shaped (parenchymal nodule) or worm-shaped (juxtapleural nodule). Both kinds of lesions have a radio-density greater than lung parenchyma, thus appearing white on the images. Lung nodules might indicate a lung cancer and their early stage detection arguably improves the patient survival rate. CT is considered to be the most accurate imaging modality for nodule detection. However, the large amount of data per examination makes the full analysis difficult, leading to omission of nodules by the radiologist. We developed an advanced computerized method for the automatic detection of internal and juxtapleural nodules on low-dose and thin-slice lung CT scan. This method consists of an initial selection of nodule candidates list, the segmentation of each candidate nodule and the classification of the features computed for each segmented nodule candidate.The presented CAD system is aimed to reduce the number of omissions and to decrease the radiologist scan examination time. Our system locates with the same scheme both internal and juxtapleural nodules. For a correct volume segmentation of the lung parenchyma, the system uses a Region Growing (RG) algorithm and an opening process for including the juxtapleural nodules. The segmentation and the extraction of the suspected nodular lesions from CT images by a lung CAD system constitutes a hard task. In order to solve this key problem, we use a new Stable 3D Mass–Spring Model (MSM) combined with a spline curves reconstruction process. Our model represents concurrently the characteristic gray value range, the directed contour information as well as shape knowledge, which leads to a much more robust and efficient segmentation process. For distinguishing the real nodules among nodule candidates, an additional classification step is applied; furthermore, a neural network is applied to reduce the false positives (FPs) after a double-threshold cut. The system performance was tested on a set of 84 scans made available by the Lung Image Database Consortium (LIDC) annotated by four expert radiologists. The detection rate of the system is 97% with 6.1 FPs/CT. A reduction to 2.5 FPs/CT is achieved at 88% sensitivity. We presented a new 3D segmentation technique for lung nodules in CT datasets, using deformable MSMs. The result is a efficient segmentation process able to converge, identifying the shape of the generic ROI, after a few iterations. Our suitable results show that the use of the 3D AC model and the feature analysis based FPs reduction process constitutes an accurate approach to the segmentation and the classification of lung nodules

    Lung Cancer Screening Using Adaptive Memory-Augmented Recurrent Networks

    Full text link
    In this paper, we investigate the effectiveness of deep learning techniques for lung nodule classification in computed tomography scans. Using less than 10,000 training examples, our deep networks perform two times better than a standard radiology software. Visualization of the networks' neurons reveals semantically meaningful features that are consistent with the clinical knowledge and radiologists' perception. Our paper also proposes a novel framework for rapidly adapting deep networks to the radiologists' feedback, or change in the data due to the shift in sensor's resolution or patient population. The classification accuracy of our approach remains above 80% while popular deep networks' accuracy is around chance. Finally, we provide in-depth analysis of our framework by asking a radiologist to examine important networks' features and perform blind re-labeling of networks' mistakes

    A Collaborative Computer Aided Diagnosis (C-CAD) System with Eye-Tracking, Sparse Attentional Model, and Deep Learning

    Full text link
    There are at least two categories of errors in radiology screening that can lead to suboptimal diagnostic decisions and interventions:(i)human fallibility and (ii)complexity of visual search. Computer aided diagnostic (CAD) tools are developed to help radiologists to compensate for some of these errors. However, despite their significant improvements over conventional screening strategies, most CAD systems do not go beyond their use as second opinion tools due to producing a high number of false positives, which human interpreters need to correct. In parallel with efforts in computerized analysis of radiology scans, several researchers have examined behaviors of radiologists while screening medical images to better understand how and why they miss tumors, how they interact with the information in an image, and how they search for unknown pathology in the images. Eye-tracking tools have been instrumental in exploring answers to these fundamental questions. In this paper, we aim to develop a paradigm shift CAD system, called collaborative CAD (C-CAD), that unifies both of the above mentioned research lines: CAD and eye-tracking. We design an eye-tracking interface providing radiologists with a real radiology reading room experience. Then, we propose a novel algorithm that unifies eye-tracking data and a CAD system. Specifically, we present a new graph based clustering and sparsification algorithm to transform eye-tracking data (gaze) into a signal model to interpret gaze patterns quantitatively and qualitatively. The proposed C-CAD collaborates with radiologists via eye-tracking technology and helps them to improve diagnostic decisions. The C-CAD learns radiologists' search efficiency by processing their gaze patterns. To do this, the C-CAD uses a deep learning algorithm in a newly designed multi-task learning platform to segment and diagnose cancers simultaneously.Comment: Submitted to Medical Image Analysis Journal (MedIA

    DeepLung: Deep 3D Dual Path Nets for Automated Pulmonary Nodule Detection and Classification

    Full text link
    In this work, we present a fully automated lung computed tomography (CT) cancer diagnosis system, DeepLung. DeepLung consists of two components, nodule detection (identifying the locations of candidate nodules) and classification (classifying candidate nodules into benign or malignant). Considering the 3D nature of lung CT data and the compactness of dual path networks (DPN), two deep 3D DPN are designed for nodule detection and classification respectively. Specifically, a 3D Faster Regions with Convolutional Neural Net (R-CNN) is designed for nodule detection with 3D dual path blocks and a U-net-like encoder-decoder structure to effectively learn nodule features. For nodule classification, gradient boosting machine (GBM) with 3D dual path network features is proposed. The nodule classification subnetwork was validated on a public dataset from LIDC-IDRI, on which it achieved better performance than state-of-the-art approaches and surpassed the performance of experienced doctors based on image modality. Within the DeepLung system, candidate nodules are detected first by the nodule detection subnetwork, and nodule diagnosis is conducted by the classification subnetwork. Extensive experimental results demonstrate that DeepLung has performance comparable to experienced doctors both for the nodule-level and patient-level diagnosis on the LIDC-IDRI dataset.\footnote{https://github.com/uci-cbcl/DeepLung.git}Comment: 9 pages, 8 figures, IEEE WACV conference. arXiv admin note: substantial text overlap with arXiv:1709.0553

    Evaluate the Malignancy of Pulmonary Nodules Using the 3D Deep Leaky Noisy-or Network

    Full text link
    Automatic diagnosing lung cancer from Computed Tomography (CT) scans involves two steps: detect all suspicious lesions (pulmonary nodules) and evaluate the whole-lung/pulmonary malignancy. Currently, there are many studies about the first step, but few about the second step. Since the existence of nodule does not definitely indicate cancer, and the morphology of nodule has a complicated relationship with cancer, the diagnosis of lung cancer demands careful investigations on every suspicious nodule and integration of information of all nodules. We propose a 3D deep neural network to solve this problem. The model consists of two modules. The first one is a 3D region proposal network for nodule detection, which outputs all suspicious nodules for a subject. The second one selects the top five nodules based on the detection confidence, evaluates their cancer probabilities and combines them with a leaky noisy-or gate to obtain the probability of lung cancer for the subject. The two modules share the same backbone network, a modified U-net. The over-fitting caused by the shortage of training data is alleviated by training the two modules alternately. The proposed model won the first place in the Data Science Bowl 2017 competition. The code has been made publicly available.Comment: 12 pages, 9 figure

    Predicting Lung Nodule Malignancies by Combining Deep Convolutional Neural Network and Handcrafted Features

    Full text link
    To predict lung nodule malignancy with a high sensitivity and specificity, we propose a fusion algorithm that combines handcrafted features (HF) into the features learned at the output layer of a 3D deep convolutional neural network (CNN). First, we extracted twenty-nine handcrafted features, including nine intensity features, eight geometric features, and twelve texture features based on grey-level co-occurrence matrix (GLCM) averaged from thirteen directions. We then trained 3D CNNs modified from three state-of-the-art 2D CNN architectures (AlexNet, VGG-16 Net and Multi-crop Net) to extract the CNN features learned at the output layer. For each 3D CNN, the CNN features combined with the 29 handcrafted features were used as the input for the support vector machine (SVM) coupled with the sequential forward feature selection (SFS) method to select the optimal feature subset and construct the classifiers. The fusion algorithm takes full advantage of the handcrafted features and the highest level CNN features learned at the output layer. It can overcome the disadvantage of the handcrafted features that may not fully reflect the unique characteristics of a particular lesion by combining the intrinsic CNN features. Meanwhile, it also alleviates the requirement of a large scale annotated dataset for the CNNs based on the complementary of handcrafted features. The patient cohort includes 431 malignant nodules and 795 benign nodules extracted from the LIDC/IDRI database. For each investigated CNN architecture, the proposed fusion algorithm achieved the highest AUC, accuracy, sensitivity, and specificity scores among all competitive classification models.Comment: 11 pages, 5 figures, 5 tables. This work has been submitted to the IEEE for possible publicatio

    DeepLesion: Automated Deep Mining, Categorization and Detection of Significant Radiology Image Findings using Large-Scale Clinical Lesion Annotations

    Full text link
    Extracting, harvesting and building large-scale annotated radiological image datasets is a greatly important yet challenging problem. It is also the bottleneck to designing more effective data-hungry computing paradigms (e.g., deep learning) for medical image analysis. Yet, vast amounts of clinical annotations (usually associated with disease image findings and marked using arrows, lines, lesion diameters, segmentation, etc.) have been collected over several decades and stored in hospitals' Picture Archiving and Communication Systems. In this paper, we mine and harvest one major type of clinical annotation data - lesion diameters annotated on bookmarked images - to learn an effective multi-class lesion detector via unsupervised and supervised deep Convolutional Neural Networks (CNN). Our dataset is composed of 33,688 bookmarked radiology images from 10,825 studies of 4,477 unique patients. For every bookmarked image, a bounding box is created to cover the target lesion based on its measured diameters. We categorize the collection of lesions using an unsupervised deep mining scheme to generate clustered pseudo lesion labels. Next, we adopt a regional-CNN method to detect lesions of multiple categories, regardless of missing annotations (normally only one lesion is annotated, despite the presence of multiple co-existing findings). Our integrated mining, categorization and detection framework is validated with promising empirical results, as a scalable, universal or multi-purpose CAD paradigm built upon abundant retrospective medical data. Furthermore, we demonstrate that detection accuracy can be significantly improved by incorporating pseudo lesion labels (e.g., Liver lesion/tumor, Lung nodule/tumor, Abdomen lesions, Chest lymph node and others). This dataset will be made publicly available (under the open science initiative)

    CT-GAN: Malicious Tampering of 3D Medical Imagery using Deep Learning

    Full text link
    In 2018, clinics and hospitals were hit with numerous attacks leading to significant data breaches and interruptions in medical services. An attacker with access to medical records can do much more than hold the data for ransom or sell it on the black market. In this paper, we show how an attacker can use deep-learning to add or remove evidence of medical conditions from volumetric (3D) medical scans. An attacker may perform this act in order to stop a political candidate, sabotage research, commit insurance fraud, perform an act of terrorism, or even commit murder. We implement the attack using a 3D conditional GAN and show how the framework (CT-GAN) can be automated. Although the body is complex and 3D medical scans are very large, CT-GAN achieves realistic results which can be executed in milliseconds. To evaluate the attack, we focused on injecting and removing lung cancer from CT scans. We show how three expert radiologists and a state-of-the-art deep learning AI are highly susceptible to the attack. We also explore the attack surface of a modern radiology network and demonstrate one attack vector: we intercepted and manipulated CT scans in an active hospital network with a covert penetration test. Demo video: https://youtu.be/_mkRAArj-x0 Source code: https://github.com/ymirsky/CT-GANComment: This paper is included in the Proceedings of the 28th USENIX Security Symposium (USENIX Security 2019

    Holistic and Comprehensive Annotation of Clinically Significant Findings on Diverse CT Images: Learning from Radiology Reports and Label Ontology

    Full text link
    In radiologists' routine work, one major task is to read a medical image, e.g., a CT scan, find significant lesions, and describe them in the radiology report. In this paper, we study the lesion description or annotation problem. Given a lesion image, our aim is to predict a comprehensive set of relevant labels, such as the lesion's body part, type, and attributes, which may assist downstream fine-grained diagnosis. To address this task, we first design a deep learning module to extract relevant semantic labels from the radiology reports associated with the lesion images. With the images and text-mined labels, we propose a lesion annotation network (LesaNet) based on a multilabel convolutional neural network (CNN) to learn all labels holistically. Hierarchical relations and mutually exclusive relations between the labels are leveraged to improve the label prediction accuracy. The relations are utilized in a label expansion strategy and a relational hard example mining algorithm. We also attach a simple score propagation layer on LesaNet to enhance recall and explore implicit relation between labels. Multilabel metric learning is combined with classification to enable interpretable prediction. We evaluated LesaNet on the public DeepLesion dataset, which contains over 32K diverse lesion images. Experiments show that LesaNet can precisely annotate the lesions using an ontology of 171 fine-grained labels with an average AUC of 0.9344.Comment: CVPR 2019 oral, main paper + supplementary materia
    • …
    corecore