140 research outputs found

    Self-Selective Correlation Ship Tracking Method for Smart Ocean System

    Full text link
    In recent years, with the development of the marine industry, navigation environment becomes more complicated. Some artificial intelligence technologies, such as computer vision, can recognize, track and count the sailing ships to ensure the maritime security and facilitates the management for Smart Ocean System. Aiming at the scaling problem and boundary effect problem of traditional correlation filtering methods, we propose a self-selective correlation filtering method based on box regression (BRCF). The proposed method mainly include: 1) A self-selective model with negative samples mining method which effectively reduces the boundary effect in strengthening the classification ability of classifier at the same time; 2) A bounding box regression method combined with a key points matching method for the scale prediction, leading to a fast and efficient calculation. The experimental results show that the proposed method can effectively deal with the problem of ship size changes and background interference. The success rates and precisions were higher than Discriminative Scale Space Tracking (DSST) by over 8 percentage points on the marine traffic dataset of our laboratory. In terms of processing speed, the proposed method is higher than DSST by nearly 22 Frames Per Second (FPS)

    Recurrent Neural Networks For Accurate RSSI Indoor Localization

    Full text link
    This paper proposes recurrent neuron networks (RNNs) for a fingerprinting indoor localization using WiFi. Instead of locating user's position one at a time as in the cases of conventional algorithms, our RNN solution aims at trajectory positioning and takes into account the relation among the received signal strength indicator (RSSI) measurements in a trajectory. Furthermore, a weighted average filter is proposed for both input RSSI data and sequential output locations to enhance the accuracy among the temporal fluctuations of RSSI. The results using different types of RNN including vanilla RNN, long short-term memory (LSTM), gated recurrent unit (GRU) and bidirectional LSTM (BiLSTM) are presented. On-site experiments demonstrate that the proposed structure achieves an average localization error of 0.750.75 m with 80%80\% of the errors under 11 m, which outperforms the conventional KNN algorithms and probabilistic algorithms by approximately 30%30\% under the same test environment.Comment: Received signal strength indicator (RSSI), WiFi indoor localization, recurrent neuron network (RNN), long shortterm memory (LSTM), fingerprint-based localizatio

    Graph signal reconstruction techniques for IoT air pollution monitoring platforms

    Get PDF
    Air pollution monitoring platforms play a very important role in preventing and mitigating the effects of pollution. Recent advances in the field of graph signal processing have made it possible to describe and analyze air pollution monitoring networks using graphs. One of the main applications is the reconstruction of the measured signal in a graph using a subset of sensors. Reconstructing the signal using information from neighboring sensors is a key technique for maintaining network data quality, with examples including filling in missing data with correlated neighboring nodes, creating virtual sensors, or correcting a drifting sensor with neighboring sensors that are more accurate. This paper proposes a signal reconstruction framework for air pollution monitoring data where a graph signal reconstruction model is superimposed on a graph learned from the data. Different graph signal reconstruction methods are compared on actual air pollution data sets measuring O3, NO2, and PM10. The ability of the methods to reconstruct the signal of a pollutant is shown, as well as the computational cost of this reconstruction. The results indicate the superiority of methods based on kernel-based graph signal reconstruction, as well as the difficulties of the methods to scale in an air pollution monitoring network with a large number of low-cost sensors. However, we show that the scalability of the framework can be improved with simple methods, such as partitioning the network using a clustering algorithm.This work is supported by the National Spanish funding PID2019-107910RB-I00, by regional project 2017SGR-990, and with the support of Secretaria d’Universitats i Recerca de la Generalitat de Catalunya i del Fons Social Europeu.Peer ReviewedPostprint (author's final draft

    Electrical and Computer Engineering Research Report 2009

    Get PDF
    Department Research Publications Enterprisehttps://digitalcommons.mtu.edu/ece-annualreports/1004/thumbnail.jp

    An Efficient and Accurate Indoor Positioning System

    Get PDF
    In this thesis, an indoor localization method using on-line independent support vector machine (OISVM) classification method and under-sampling techniques is proposed. The proposed positioning method is based on the received signal strength indicator (RSSI) of Wi-Fi signals. A new under-sampling algorithm is developed to address the imbalanced data problem associated with the OISVM, and a kernel function parameter selection algorithm is introduced for the training process. The time complexity of both the training process and the prediction process are decreased. Comparative experimental results indicate that the training speed and the prediction speed are improved by at least 10 times and 5 times, respectively. Furthermore, through on-line learning, the estimation error is decreased by 0.8m. Such an improvement makes the proposed method an ideal indoor positioning solution for portable devices where the processing power and the memory capacity are limited. A new Particle Filter (PF) scheme for indoor localization using Wi-Fi received signal strength indicator (RSSI) and inertial sensor measurements has also been presented. RSSI is affected significantly by multipath fading, building structure and obstacles in indoor environments. The information provided by inertial sensors combined with the proposed particle filter are used to develop a positioning algorithm supporting a smooth and stable localization experience. To differentiate similar fingerprints, a single-hidden layer feedforward networks (SLFNs) is used to model the multiple probabilistic estimations and to improve the performance of the PF. A new initialization algorithm using Random Sample Consensus (RANSAC) has also been presented to reduce the convergence time. Experimental measurements were carried out to determine the performance of the proposed algorithm. The results indicate that the positioning error falls to less than 1.2 (m)

    On the Real Time Object Detection and Tracking

    Get PDF
    Object detection and tracking is widely used for detecting motions of objects present in images and video.Since last so many decades, numerous real time object detection and tracking methods have been proposed byresearchers. The proposed methods for objects to be tracked till date require some preceding informationassociated with moving objects. In real time object detection and tracking approach segmentation is the initialtask followed by background modeling for the extraction of predefined information including shape of the objects,position in the starting frame, texture, geometry and so on for further processing of the cluster pixels and videosequence of these objects. The object detection and tracking can be applied in the fields like computerized videosurveillance, traffic monitoring, robotic vision, gesture identification, human-computer interaction, militarysurveillance system, vehicle navigation, medical imaging, biomedical image analysis and many more. In thispaper we focus detailed technical review of different methods proposed for detection and tracking of objects. Thecomparison of various techniques of detection and tracking is the purpose of this work

    Object Tracking in Vary Lighting Conditions for Fog based Intelligent Surveillance of Public Spaces

    Get PDF
    With rapid development of computer vision and artificial intelligence, cities are becoming more and more intelligent. Recently, since intelligent surveillance was applied in all kind of smart city services, object tracking attracted more attention. However, two serious problems blocked development of visual tracking in real applications. The first problem is its lower performance under intense illumination variation while the second issue is its slow speed. This paper addressed these two problems by proposing a correlation filter based tracker. Fog computing platform was deployed to accelerate the proposed tracking approach. The tracker was constructed by multiple positions' detections and alternate templates (MPAT). The detection position was repositioned according to the estimated speed of target by optical flow method, and the alternate template was stored with a template update mechanism, which were all computed at the edge. Experimental results on large-scale public benchmark datasets showed the effectiveness of the proposed method in comparison with state-of-the-art methods
    • …
    corecore