18,163 research outputs found

    Probabilistic Default Reasoning with Conditional Constraints

    Full text link
    We propose a combination of probabilistic reasoning from conditional constraints with approaches to default reasoning from conditional knowledge bases. In detail, we generalize the notions of Pearl's entailment in system Z, Lehmann's lexicographic entailment, and Geffner's conditional entailment to conditional constraints. We give some examples that show that the new notions of z-, lexicographic, and conditional entailment have similar properties like their classical counterparts. Moreover, we show that the new notions of z-, lexicographic, and conditional entailment are proper generalizations of both their classical counterparts and the classical notion of logical entailment for conditional constraints.Comment: 8 pages; to appear in Proceedings of the Eighth International Workshop on Nonmonotonic Reasoning, Special Session on Uncertainty Frameworks in Nonmonotonic Reasoning, Breckenridge, Colorado, USA, 9-11 April 200

    The stack resource protocol based on real time transactions

    Get PDF
    Current hard real time (HRT) kernels have their timely behaviour guaranteed at the cost of a rather restrictive use of the available resources. This makes current HRT scheduling techniques inadequate for use in a multimedia environment where one can profit by a better and more flexible use of the resources. It is shown that one can improve the flexibility and efficiency of real time kernels and a method is proposed for precise quality of service schedulability analysis of the stack resource protocol. This protocol is generalised by introducing real time transactions, which makes its use straightforward and efficient. Transactions can be refined to nested critical sections if the smallest estimation of blocking is desired. The method can be used for hard real time systems in general and for multimedia systems in particular

    Answer Set Programming Modulo `Space-Time'

    Full text link
    We present ASP Modulo `Space-Time', a declarative representational and computational framework to perform commonsense reasoning about regions with both spatial and temporal components. Supported are capabilities for mixed qualitative-quantitative reasoning, consistency checking, and inferring compositions of space-time relations; these capabilities combine and synergise for applications in a range of AI application areas where the processing and interpretation of spatio-temporal data is crucial. The framework and resulting system is the only general KR-based method for declaratively reasoning about the dynamics of `space-time' regions as first-class objects. We present an empirical evaluation (with scalability and robustness results), and include diverse application examples involving interpretation and control tasks

    Maxallent: Maximizers of all Entropies and Uncertainty of Uncertainty

    Full text link
    The entropy maximum approach (Maxent) was developed as a minimization of the subjective uncertainty measured by the Boltzmann--Gibbs--Shannon entropy. Many new entropies have been invented in the second half of the 20th century. Now there exists a rich choice of entropies for fitting needs. This diversity of entropies gave rise to a Maxent "anarchism". Maxent approach is now the conditional maximization of an appropriate entropy for the evaluation of the probability distribution when our information is partial and incomplete. The rich choice of non-classical entropies causes a new problem: which entropy is better for a given class of applications? We understand entropy as a measure of uncertainty which increases in Markov processes. In this work, we describe the most general ordering of the distribution space, with respect to which all continuous-time Markov processes are monotonic (the Markov order). For inference, this approach results in a set of conditionally "most random" distributions. Each distribution from this set is a maximizer of its own entropy. This "uncertainty of uncertainty" is unavoidable in analysis of non-equilibrium systems. Surprisingly, the constructive description of this set of maximizers is possible. Two decomposition theorems for Markov processes provide a tool for this description.Comment: 23 pages, 4 figures, Correction in Conclusion (postprint
    • …
    corecore