229 research outputs found

    A likelihood ratio analysis of digital phase modulation

    Get PDF
    Bibliography: p. 180-188.Although the likelihood ratio forms the theoretical basis for maximum likelihood (ML) detection in coherent digital communication systems, it has not been applied directly to the problem of designing good trellis-coded modulation (TOM) schemes. The remarkably simple optimal receiver of minimum shift keying (MSK) has been shown to result from the mathematical simplification of its likelihood ratio into a single term. The log-likelihood ratio then becomes a linear sum of metrics which can be implemented as a so-called simplified receiver, comprising only a few adders and delay elements. This thesis project investigated the possible existence of coded modulation schemes with similarly simplifying likelihood ratios, which would have almost trivially simple receivers compared to the Viterbi decoders which are typically required for maximum likelihood sequence estimation (MLSE). A useful notation, called the likelihood transform, was presented to aid the analysis of likelihood ratios. The work concentrated initially on computer-aided searches, first for trellis codes which may give rise to simplifying likelihood ratios for continuous phase modulation (CPM), and then for mathematical identities which may aid in the simplification of generic likelihood ratios for equal-energy modulation. The first search yielded no simplified receivers, and all the identities produced by the second search had structures similar to the likelihood ratio of MSK. These observations prompted a formal proof of the non-existence of simplified receivers which use information from more than two symbols in their observation period. This result strictly bounds the error performance that is possible with a simplified receiver. It was also proved that simplified receivers are only optimal for modulation schemes which use no more than two pairs of antipodal signals, and that only binary modulation schemes can have simplified receivers which use information from all the symbols in their observation period

    APPLICATIONS OF ACOUSTO-OPTIC DEMODULATION AND DECODING TECHNIQUES

    Get PDF
    This thesis describes the operation and performance of an acousto-optic demodulator system consisting of a laser source, an acousto-optic cell and a bi-cell detector. The bi-cell detector is made up of two photodiodes positioned side by side, separated by a small gap. Theory is developed to predict the following; the linear operating range for different gap sizes, absolute frequency sensitivity, system output in response to discrete phase changes, optimum gap size for phase demodulation, absolute descrete phase change sensitivity, the performance of the system in the presence of carrier noise and the effect of clipping the carrier signal on both frequency and phase modulated signals. A detailed model of the system has been written, using the software package Mathcad, which incorporates all the parameters that affect the performance of the physical system. The model has been used to study how the performance of the system changes as these parameters are varied. It is shown that the AO demodulator can be used in a number of ways; as a frequency demodulator, a phase demodulator and to demodulate digitally modulated signals, and that the optimum values of some parameters are different for each application. The model is also used to investigate the response of the system to a number of the most common forms of digital modulation. It is shown that it is possible, without any a priori knowledge of the signal, to identify each of these forms of modulation, and ultimately decode messages contained on the signals. The system can also be used to measure the frequency shift on pulse doppler radar. It is shown that the rms frequency error on a pulse using the AO demodulator is 150% better than that of existing systems. Experimental results are presented that are in good agreement with the results gained from both the theoretical and modelled analysis of the system. Finally suggestions are made for areas of further work on the signal processing of the output signals and possible uses of the demodulator in the future.DRA (Funtington

    High-performance signal acquisition algorithms for wireless communications receivers

    Get PDF
    Due to the uncertainties introduced by the propagation channel, and RF and mixed signal circuits imperfections, digital communication receivers require efficient and robust signal acquisition algorithms for timing and carrier recovery, and interfer- ence rejection. The main theme of this work is the development of efficient and robust signal synchronization and interference rejection schemes for narrowband, wideband and ultra wideband communications systems. A series of novel signal acquisition schemes together with their performance analysis and comparisons with existing state-of-the- art results are introduced. The design effort is first focused on narrowband systems, and then on wideband and ultra wideband systems. For single carrier modulated narrowband systems, it is found that conventional timing recovery schemes present low efficiency, e.g., certain feedback timing recov- ery schemes exhibit the so-called hang-up phenomenon, while another class of blind feedforward timing recovery schemes presents large self-noise. Based on a general re- search framework, we propose new anti-hangup algorithms and prefiltering techniques to speed up the feedback timing recovery and reduce the self-noise of feedforward tim- ing estimators, respectively. Orthogonal frequency division multiplexing (OFDM) technique is well suited for wideband wireless systems. However, OFDM receivers require high performance car-rier and timing synchronization. A new coarse synchronization scheme is proposed for efficient carrier frequency offset and timing acquisition. Also, a novel highly accurate decision-directed algorithm is proposed to track and compensate the residual phase and timing errors after the coarse synchronization step. Both theoretical analysis and computer simulations indicate that the proposed algorithms greatly improve the performance of OFDM receivers. The results of an in-depth study show that a narrowband interference (NBI) could cause serious performance loss in multiband OFDMbased ultra-wideband (UWB) sys- tems. A novel NBI mitigation scheme, based on a digital NBI detector and adaptive analog notch filter bank, is proposed to reduce the effects of NBI in UWB systems. Simulation results show that the proposed NBI mitigation scheme improves signifi- cantly the performance of a standard UWB receiver (this improvement manifests as a signal-to-noise ratio (SNR) gain of 9 dB)

    Development and Experimental Analysis of Wireless High Accuracy Ultra-Wideband Localization Systems for Indoor Medical Applications

    Get PDF
    This dissertation addresses several interesting and relevant problems in the field of wireless technologies applied to medical applications and specifically problems related to ultra-wideband high accuracy localization for use in the operating room. This research is cross disciplinary in nature and fundamentally builds upon microwave engineering, software engineering, systems engineering, and biomedical engineering. A good portion of this work has been published in peer reviewed microwave engineering and biomedical engineering conferences and journals. Wireless technologies in medicine are discussed with focus on ultra-wideband positioning in orthopedic surgical navigation. Characterization of the operating room as a medium for ultra-wideband signal transmission helps define system design requirements. A discussion of the first generation positioning system provides a context for understanding the overall system architecture of the second generation ultra-wideband positioning system outlined in this dissertation. A system-level simulation framework provides a method for rapid prototyping of ultra-wideband positioning systems which takes into account all facets of the system (analog, digital, channel, experimental setup). This provides a robust framework for optimizing overall system design in realistic propagation environments. A practical approach is taken to outline the development of the second generation ultra-wideband positioning system which includes an integrated tag design and real-time dynamic tracking of multiple tags. The tag and receiver designs are outlined as well as receiver-side digital signal processing, system-level design support for multi-tag tracking, and potential error sources observed in dynamic experiments including phase center error, clock jitter and drift, and geometric position dilution of precision. An experimental analysis of the multi-tag positioning system provides insight into overall system performance including the main sources of error. A five base station experiment shows the potential of redundant base stations in improving overall dynamic accuracy. Finally, the system performance in low signal-to-noise ratio and non-line-of-sight environments is analyzed by focusing on receiver-side digitally-implemented ranging algorithms including leading-edge detection and peak detection. These technologies are aimed at use in next-generation medical systems with many applications including surgical navigation, wireless telemetry, medical asset tracking, and in vivo wireless sensors

    Sparse graph-based coding schemes for continuous phase modulations

    Get PDF
    The use of the continuous phase modulation (CPM) is interesting when the channel represents a strong non-linearity and in the case of limited spectral support; particularly for the uplink, where the satellite holds an amplifier per carrier, and for downlinks where the terminal equipment works very close to the saturation region. Numerous studies have been conducted on this issue but the proposed solutions use iterative CPM demodulation/decoding concatenated with convolutional or block error correcting codes. The use of LDPC codes has not yet been introduced. Particularly, no works, to our knowledge, have been done on the optimization of sparse graph-based codes adapted for the context described here. In this study, we propose to perform the asymptotic analysis and the design of turbo-CPM systems based on the optimization of sparse graph-based codes. Moreover, an analysis on the corresponding receiver will be done

    The 30/20 GHz mixed user architecture development study

    Get PDF
    A mixed-user system is described which provides cost-effective communications services to a wide range of user terminal classes, ranging from one or two voice channel support in a direct-to-user mode, to multiple 500 mbps trunking channel support. Advanced satellite capabilities are utilized to minimize the cost of small terminals. In a system with thousands of small terminals, this approach results in minimum system cost

    Joint University Program for Air Transportation Research, 1991-1992

    Get PDF
    This report summarizes the research conducted during the academic year 1991-1992 under the FAA/NASA sponsored Joint University Program for Air Transportation Research. The year end review was held at Ohio University, Athens, Ohio, June 18-19, 1992. The Joint University Program is a coordinated set of three grants sponsored by the Federal Aviation Administration and NASA Langley Research Center, one each with the Massachusetts Institute of Technology (NGL-22-009-640), Ohio University (NGR-36-009-017), and Princeton University (NGL-31-001-252). Completed works, status reports, and annotated bibliographies are presented for research topics, which include navigation, guidance and control theory and practice, intelligent flight control, flight dynamics, human factors, and air traffic control processes. An overview of the year's activities for each university is also presented
    corecore