142 research outputs found

    An Energetic Variational Approach for the Cahn--Hilliard Equation with Dynamic Boundary Condition: Model Derivation and Mathematical Analysis

    Full text link
    The Cahn--Hilliard equation is a fundamental model that describes phase separation processes of binary mixtures. In recent years, several types of dynamic boundary conditions have been proposed in order to account for possible short-range interactions of the material with the solid wall. Our first aim in this paper is to propose a new class of dynamic boundary conditions for the Cahn--Hilliard equation in a rather general setting. The derivation is based on an energetic variational approach that combines the least action principle and Onsager's principle of maximum energy dissipation. One feature of our model is that it naturally fulfills three important physical constraints such as conservation of mass, dissipation of energy and force balance relations. Next, we provide a comprehensive analysis of the resulting system of partial differential equations. Under suitable assumptions, we prove the existence and uniqueness of global weak/strong solutions to the initial boundary value problem with or without surface diffusion. Furthermore, we establish the uniqueness of asymptotic limit as t→+∞t\to+\infty and characterize the stability of local energy minimizers for the system.Comment: to appear in Arch. Rational Mech. Ana

    Flowing matter

    Get PDF
    This open access book, published in the Soft and Biological Matter series, presents an introduction to selected research topics in the broad field of flowing matter, including the dynamics of fluids with a complex internal structure -from nematic fluids to soft glasses- as well as active matter and turbulent phenomena.Flowing matter is a subject at the crossroads between physics, mathematics, chemistry, engineering, biology and earth sciences, and relies on a multidisciplinary approach to describe the emergence of the macroscopic behaviours in a system from the coordinated dynamics of its microscopic constituents.Depending on the microscopic interactions, an assembly of molecules or of mesoscopic particles can flow like a simple Newtonian fluid, deform elastically like a solid or behave in a complex manner. When the internal constituents are active, as for biological entities, one generally observes complex large-scale collective motions. Phenomenology is further complicated by the invariable tendency of fluids to display chaos at the large scales or when stirred strongly enough. This volume presents several research topics that address these phenomena encompassing the traditional micro-, meso-, and macro-scales descriptions, and contributes to our understanding of the fundamentals of flowing matter.This book is the legacy of the COST Action MP1305 “Flowing Matter”

    Analysis of Coarsening of Complex Structures.

    Full text link
    Coarsening is an ubiquitous phenomenon that alters the microstructure of the material and its properties. While coarsening of spherical particles has been extensively studied over the last half century, the understanding of coarsening of complex microstructures is still at an early stage. The complex morphology and topology pose difficulty in establishing a theory of coarsening of such microstructures. In an effort to elucidate the dynamics of coarsening, we examine the morphological evolution of bicontinuous structures simulated using the phase-field method. To improve the accuracy of the calculation of interfacial characteristics of the simulated structures, we develop a smoothing algorithm termed ``level-set smoothing.'' We employ statistical analyses to uncover correlations between interfacial characteristics and their rate of changes. As the framework for the coarsening theory development, we propose to consider the evolution as a consequence of (i) the interfacial velocity induced by diffusion and (ii) the resulting evolution of the interfacial curvatures. As a first step, we examine the evolution of a bicontinuous structure simulated via nonconserved dynamics, in which the interfacial velocity is proportional to the local mean curvature, in order to focus on the second aspect of the evolution (ii). We find that, while the interfacial velocity is locally determined, the evolution of mean curvature is nonlocal and depends on the curvatures of the nearby interfaces. As a second step, we examine the evolution of bicontinuous structures simulated via conserved dynamics to investigate both aspects of the evolution, (i) and (ii). Here, we find that the interfacial velocity is correlated with both the mean curvature and the surface Laplacian of mean curvature. Based on these correlations, we employ a semi-analytical approach to predict the average rate of change of mean curvature, which is found to be consistent with the simulation results. Lastly, in an effort to develop a theory of coarsening of complex microstructures, we derive a general continuity equation of interfacial area to predict the evolution of the overall morphology of a microstructure undergoing coarsening. Simulation of rods undergoing pinching is also conducted to provide insights into the source term arising from topological singularity.PhDMaterials Science and EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/133292/1/challan_1.pd

    Modelling of two-phase flow with surface active particles

    Get PDF
    Kolloidpartikel die von zwei nicht mischbaren Fluiden benetzt werden, tendieren dazu sich an der fluiden GrenzflĂ€che aufzuhalten um die OberflĂ€chenspannung zu minimieren. Bei genĂŒgender Anzahl solcher Kolloide werden diese zusammengedrĂŒckt und lassen die fluide GrenzflĂ€che erstarren. Das gesamte System aus Fluiden und Kolloiden bildet dann eine spezielle Emulsion mit interessanten Eigenschaften. In dieser Arbeit wird ein kontinuum Model fĂŒr solche Systeme entwickelt, basierend auf den Prinzipien der Massenerhaltung und der themodynamischen Konsistenz. Dabei wird die makroskopische Zwei-Phasen-Strömung durch eine Navier-Stokes Cahn-Hilliard Gleichung modelliert und die mikroskopischen Partikel an der fluiden GrenzflĂ€che durch einen Phase-Field-Crystal Ansatz beschrieben. Zur Evaluation des verwendeten Strömungsmodells wird ein Test verschiedener Navier-Stokes Cahn-Hilliard Modelle anhand eines bekannten Benchmark Szenarios durchgefĂŒhrt. Die Ergebnisse werden mit denen von anderen Methoden zur Simulation von Zwei-Phasen-Strömungen verglichen. Desweiteren wird eine neue Methode zur Simulation von Zwei-Phasen-Strömungen in komplexen Gebieten vorgestellt. Dabei wird die komplexe Geometrie implizit durch eine Phasenfeldvariable beschrieben, welche die charakteristische Funktion des Gebietes approximiert. Die Strömungsgleichungen werden dementsprechend so umformuliert, dass sie in einem grĂ¶ĂŸeren und einfacheren Gebiet gelten, wobei die Randbedingungen implizit durch zusĂ€tzliche Quellterme eingebracht werden. Zur Einarbeitung der OberflĂ€chenkolloide in das Strömungsmodell wird schließlich die Variation der freien Energie des Gesamtsystems betrachtet. Dabei wird die Energie der Partikel durch die Phase-Field-Crystal Energie approximiert und die Energie der OberflĂ€che durch die Ginzburg-Landau Energie. Eine Variation der Gesamtenergie liefert dann die Phase-Field-Crystal Gleichung und die Navier-Stokes Cahn-Hilliard Gleichungen mit zusĂ€tzlichen elastischen Spannunngen. Zur Validierung des Ansatzes wird auch eine sharp interface Version der Gleichungen hergeleitet und mit der zuvor hergeleiteten diffuse interface Version abgeglichen. Die Diskretisierung der erhaltenen Gleichungen erfolgt durch Finiten Elemente in Kombination mit einem semi-impliziten Euler Verfahren. Durch numerische Simulationen wird die Anwendbarkeit des Modells gezeigt und bestĂ€tigt, dass die oberflĂ€chenaktiven Kolloide die fluide GrenzflĂ€che hinreichend steif machen können um externen KrĂ€ften entgegenzuwirken und das gesamte System zu stabilisieren.Colloid particles that are partially wetted by two immiscible fluids can become confined to fluidfluid interfaces. At sufficiently high volume fractions, the colloids may jam and the interface may crystallize. The fluids together with the interfacial colloids compose an emulsion with interesting new properties and offer an important route to new soft materials. Based on the principles of mass conservation and thermodynamic consistency, we develop a continuum model for such systems which combines a Cahn-Hilliard-Navier-Stokes model for the macroscopic two-phase fluid system with a surface Phase-Field-Crystal model for the microscopic colloidal particles along the interface. We begin with validating the used flow model by testing different diffuse interface models on a benchmark configuration for a two-dimensional rising bubble and compare the results with reference solutions obtained by other two-phase flow models. Furthermore, we present a new method for simulating two-phase flows in complex geometries, taking into account contact lines separating immiscible incompressible components. In this approach, the complex geometry is described implicitly by introducing a new phase-field variable, which is a smooth approximation of the characteristic function of the complex domain. The fluid and component concentration equations are reformulated and solved in larger regular domain with the boundary conditions being implicitly modeled using source terms. Finally, we derive the thermodynamically consistent diffuse interface model for two-phase flow with interfacial particles by taking into account the surface energy and the energy associated with surface colloids from the surface PFC model. The resulting governing equations are the phase field crystal equations and Navier-Stokes Cahn-Hilliard equations with an additional elastic stress. To validate our approach, we derive a sharp interface model and show agreement with the diffuse interface model. We demonstrate the feasibility of the model and present numerical simulations that confirm the ability of the colloids to make the interface sufficiently rigid to resist external forces and to stabilize interfaces for long times
    • 

    corecore