9,010 research outputs found

    Particle algorithms for optimization on binary spaces

    Full text link
    We discuss a unified approach to stochastic optimization of pseudo-Boolean objective functions based on particle methods, including the cross-entropy method and simulated annealing as special cases. We point out the need for auxiliary sampling distributions, that is parametric families on binary spaces, which are able to reproduce complex dependency structures, and illustrate their usefulness in our numerical experiments. We provide numerical evidence that particle-driven optimization algorithms based on parametric families yield superior results on strongly multi-modal optimization problems while local search heuristics outperform them on easier problems

    On the construction of probabilistic Newton-type algorithms

    Full text link
    It has recently been shown that many of the existing quasi-Newton algorithms can be formulated as learning algorithms, capable of learning local models of the cost functions. Importantly, this understanding allows us to safely start assembling probabilistic Newton-type algorithms, applicable in situations where we only have access to noisy observations of the cost function and its derivatives. This is where our interest lies. We make contributions to the use of the non-parametric and probabilistic Gaussian process models in solving these stochastic optimisation problems. Specifically, we present a new algorithm that unites these approximations together with recent probabilistic line search routines to deliver a probabilistic quasi-Newton approach. We also show that the probabilistic optimisation algorithms deliver promising results on challenging nonlinear system identification problems where the very nature of the problem is such that we can only access the cost function and its derivative via noisy observations, since there are no closed-form expressions available

    Constrained Nonlinear Model Predictive Control of an MMA Polymerization Process via Evolutionary Optimization

    Full text link
    In this work, a nonlinear model predictive controller is developed for a batch polymerization process. The physical model of the process is parameterized along a desired trajectory resulting in a trajectory linearized piecewise model (a multiple linear model bank) and the parameters are identified for an experimental polymerization reactor. Then, a multiple model adaptive predictive controller is designed for thermal trajectory tracking of the MMA polymerization. The input control signal to the process is constrained by the maximum thermal power provided by the heaters. The constrained optimization in the model predictive controller is solved via genetic algorithms to minimize a DMC cost function in each sampling interval.Comment: 12 pages, 9 figures, 28 reference

    Sufficient Conditions for Feasibility and Optimality of Real-Time Optimization Schemes - II. Implementation Issues

    Get PDF
    The idea of iterative process optimization based on collected output measurements, or "real-time optimization" (RTO), has gained much prominence in recent decades, with many RTO algorithms being proposed, researched, and developed. While the essential goal of these schemes is to drive the process to its true optimal conditions without violating any safety-critical, or "hard", constraints, no generalized, unified approach for guaranteeing this behavior exists. In this two-part paper, we propose an implementable set of conditions that can enforce these properties for any RTO algorithm. This second part examines the practical side of the sufficient conditions for feasibility and optimality (SCFO) proposed in the first and focuses on how they may be enforced in real application, where much of the knowledge required for the conceptual SCFO is unavailable. Methods for improving convergence speed are also considered.Comment: 56 pages, 15 figure
    • …
    corecore