5,375 research outputs found

    Improved predictive current model control based on adaptive PR controller for standalone system based DG set

    Get PDF
    This paper investigates an improved current predictive model control (PCMC) strategy with a prediction horizon of one sampling time for voltage regulation in standalone system based on diesel engine driven fixed speed of a synchronous generator. An adaptive PR controller with anti-windup scheme is employed to achieve high performance regulation without saturation issues. In addition, new method to obtain the optimal parameters of the adaptive PR controller to achieve high performance during the transition and in steady state is provided. To balance the power at the point of common coupling (PCC) as well as to feed a clean power to the connected loads, a three-phase voltage source inverter (VSI) with LRC filter is controlled using the developed improved PCMC strategy, where the output filter current is controlled using the predicting of the system behaviour model in the future step, at each sampling prediction time. The performances of the proposed configuration and the improved control strategy are verified using Matlab/Simulink interface

    Power Quality and Voltage Stability Enhancement of Terrestrial Grids and Shipboard Microgrids

    Get PDF

    Tradeoffs between AC power quality and DC bus ripple for 3-phase 3-wire inverter-connected devices within microgrids

    Get PDF
    Visions of future power systems contain high penetrations of inverters which are used to convert power from dc (direct current) to ac (alternating current) or vice versa. The behavior of these devices is dependent upon the choice and implementation of the control algorithms. In particular, there is a tradeoff between dc bus ripple and ac power quality. This study examines the tradeoffs. Four control modes are examined. Mathematical derivations are used to predict the key implications of each control mode. Then, an inverter is studied both in simulation and in hardware at the 10 kVA scale, in different microgrid environments of grid impedance and power quality. It is found that voltage-drive mode provides the best ac power quality, but at the expense of high dc bus ripple. Sinusoidal current generation and dual-sequence controllers provide relatively low dc bus ripple and relatively small effects on power quality. High-bandwidth dc bus ripple minimization mode works well in environments of low grid impedance, but is highly unsuitable within higher impedance microgrid environments and/or at low switching frequencies. The findings also suggest that the certification procedures given by G5/4, P29 and IEEE 1547 are potentially not adequate to cover all applications and scenarios
    • …
    corecore