1,373 research outputs found

    A New Hybrid Descent Method with Application to the Optimal Design of Finite Precision FIR Filters

    Get PDF
    In this paper, the problem of the optimal design of discrete coefficient FIR filters is considered. A novelhybrid descent method, consisting of a simulated annealing algorithm and a gradient-based method, isproposed. The simulated annealing algorithm operates on the space of orthogonal matrices and is used tolocate descent points for previously converged local minima. The gradient-based method is derived fromconverting the discrete problem to a continuous problem via the Stiefel manifold, where convergence canbe guaranteed. To demonstrate the effectiveness of the proposed hybrid descent method, several numericalexamples show that better discrete filter designs can be sought via this hybrid descent method

    NATURAL ALGORITHMS IN DIGITAL FILTER DESIGN

    Get PDF
    Digital filters are an important part of Digital Signal Processing (DSP), which plays vital roles within the modern world, but their design is a complex task requiring a great deal of specialised knowledge. An analysis of this design process is presented, which identifies opportunities for the application of optimisation. The Genetic Algorithm (GA) and Simulated Annealing are problem-independent and increasingly popular optimisation techniques. They do not require detailed prior knowledge of the nature of a problem, and are unaffected by a discontinuous search space, unlike traditional methods such as calculus and hill-climbing. Potential applications of these techniques to the filter design process are discussed, and presented with practical results. Investigations into the design of Frequency Sampling (FS) Finite Impulse Response (FIR) filters using a hybrid GA/hill-climber proved especially successful, improving on published results. An analysis of the search space for FS filters provided useful information on the performance of the optimisation technique. The ability of the GA to trade off a filter's performance with respect to several design criteria simultaneously, without intervention by the designer, is also investigated. Methods of simplifying the design process by using this technique are presented, together with an analysis of the difficulty of the non-linear FIR filter design problem from a GA perspective. This gave an insight into the fundamental nature of the optimisation problem, and also suggested future improvements. The results gained from these investigations allowed the framework for a potential 'intelligent' filter design system to be proposed, in which embedded expert knowledge, Artificial Intelligence techniques and traditional design methods work together. This could deliver a single tool capable of designing a wide range of filters with minimal human intervention, and of proposing solutions to incomplete problems. It could also provide the basis for the development of tools for other areas of DSP system design

    Effectively Finding the Optimal Wavelet for Hybrid Wavelet - Large Margin Signal Classification

    Full text link
    For hybrid wavelet - large margin classifiers, adapting the wavelet may significantly improve the classification performance. We propose to select the wavelet with respect to a large margin classifier and data to improve class separability and minimise the generalisation error. In this paper, we show that this wavelet adaptation problem can be formulated as an optimisation problem with polynomial objective function and investigate some techniques to solve it. In particular, we propose an adaptive grid search algorithm that efficiently solves the problem compared with standard optimisation techniques

    Application of Wilcoxon Norm for increased Outlier Insensitivity in Function Approximation Problems

    Get PDF
    In system theory, characterization and identification are fundamental problems. When the plant behavior is completely unknown, it may be characterized using certain model and then, its identification may be carried out with some artificial neural networks(ANN) (like multilayer perceptron(MLP) or functional link artificial neural network(FLANN) ) or Radial Basis Functions(RBF) using some learning rules such as the back propagation (BP) algorithm. They offer flexibility, adaptability and versatility, for the use of a variety of approaches to meet a specific goal, depending upon the circumstances and the requirements of the design specifications. The first aim of the present thesis is to provide a framework for the systematic design of adaptation laws for nonlinear system identification and channel equalization. While constructing an artificial neural network or a radial basis function neural network, the designer is often faced with the problem of choosing a network of the right size for the task. Using a smaller neural network decreases the cost of computation and increases generalization ability. However, a network which is too small may never solve the problem, while a larger network might be able to. Transmission bandwidth being one of the most precious resources in digital communication, Communication channels are usually modeled as band-limited linear finite impulse response (FIR) filters with low pass frequency response

    Design of broadband beamformers with low complexity

    Get PDF
    2011-2012 > Academic research: refereed > Publication in refereed journalVersion of RecordPublishe

    Digital Filter Design Using Improved Teaching-Learning-Based Optimization

    Get PDF
    Digital filters are an important part of digital signal processing systems. Digital filters are divided into finite impulse response (FIR) digital filters and infinite impulse response (IIR) digital filters according to the length of their impulse responses. An FIR digital filter is easier to implement than an IIR digital filter because of its linear phase and stability properties. In terms of the stability of an IIR digital filter, the poles generated in the denominator are subject to stability constraints. In addition, a digital filter can be categorized as one-dimensional or multi-dimensional digital filters according to the dimensions of the signal to be processed. However, for the design of IIR digital filters, traditional design methods have the disadvantages of easy to fall into a local optimum and slow convergence. The Teaching-Learning-Based optimization (TLBO) algorithm has been proven beneficial in a wide range of engineering applications. To this end, this dissertation focusses on using TLBO and its improved algorithms to design five types of digital filters, which include linear phase FIR digital filters, multiobjective general FIR digital filters, multiobjective IIR digital filters, two-dimensional (2-D) linear phase FIR digital filters, and 2-D nonlinear phase FIR digital filters. Among them, linear phase FIR digital filters, 2-D linear phase FIR digital filters, and 2-D nonlinear phase FIR digital filters use single-objective type of TLBO algorithms to optimize; multiobjective general FIR digital filters use multiobjective non-dominated TLBO (MOTLBO) algorithm to optimize; and multiobjective IIR digital filters use MOTLBO with Euclidean distance to optimize. The design results of the five types of filter designs are compared to those obtained by other state-of-the-art design methods. In this dissertation, two major improvements are proposed to enhance the performance of the standard TLBO algorithm. The first improvement is to apply a gradient-based learning to replace the TLBO learner phase to reduce approximation error(s) and CPU time without sacrificing design accuracy for linear phase FIR digital filter design. The second improvement is to incorporate Manhattan distance to simplify the procedure of the multiobjective non-dominated TLBO (MOTLBO) algorithm for general FIR digital filter design. The design results obtained by the two improvements have demonstrated their efficiency and effectiveness

    Echo Cancellation for Hands-Free Systems

    Get PDF
    corecore