7,114 research outputs found

    A fuzzy tree matching-based personalised e-learning recommender system

    Full text link
    © 2014 IEEE. The rapid development of e-learning systems provides learners great opportunities to access the learning activities online, which greatly supports and enhances learning practices. However, too many learning activities are emerging in the e-learning system, which makes it difficult for learners to select proper ones for their particular situations since there is no personalised service function. Recommender systems, which aim to provide personalised recommendations, can be used to solve this issue. However, e-learning systems have two features to handle: (1) data of learners and leaning activities often present tree structures; (2) data are often vague and uncertain in practice. In this study, a fuzzy tree-structured data model is proposed to comprehensively describe the complex learning activities and learner profiles. A tree matching method is then developed to match the similar learning activities or learners. To deal with the uncertain category issues, a fuzzy category tree and relevant similarity measure are developed. A hybrid recommendation approach, which considers precedence relations between learning activities and combines the semantic and collaborative filtering similarities between learners, is developed. The proposed approach can handle the special requirements in e-learning environment and make proper recommendations in e-learning systems

    A Fuzzy Approach to the Synthesis of Cognitive Maps for Modeling Decision Making in Complex Systems

    Get PDF
    The object of this study is fuzzy cognitive modeling as a means of studying semistructured socio-economic systems. The features of constructing cognitive maps, providing the ability to choose management decisions in complex semistructured socio-economic systems, are described. It is shown that further improvement of technologies necessary for developing decision support systems and their practical use is still relevant. This work aimed to improve the accuracy of cognitive modeling of semistructured systems based on a fuzzy cognitive map of structuring nonformalized situations (MSNS) with the evaluation of root-mean-square error (RMSE) and mean average squared error (MASE) coefficients. In order to achieve the goal, the following main methods were used: systems analysis methods, fuzzy logic and fuzzy sets theory postulates, theory of integral wavelet transform, correlation and autocorrelation analyses. As a result, a new methodology for constructing MSNS was proposed—a map of structuring nonformalized situations that combines the positive properties of previous fuzzy cognitive maps. The solution of modeling problems based on this methodology should increase the reliability and quality of analysis and modeling of semistructured systems and processes under uncertainty. The analysis using open datasets proved that compared to the classical ARIMA, SVR, MLP, and Fuzzy time series models, our proposed model provides better performance in terms of MASE and RMSE metrics, which confirms its advantage. Thus, it is advisable to use our proposed algorithm in the future as a mathematical basis for developing software tools for the analysis and modeling of problems in semistructured systems and processes. Doi: 10.28991/ESJ-2022-06-02-012 Full Text: PD

    Viewpoints on emergent semantics

    Get PDF
    Authors include:Philippe Cudr´e-Mauroux, and Karl Aberer (editors), Alia I. Abdelmoty, Tiziana Catarci, Ernesto Damiani, Arantxa Illaramendi, Robert Meersman, Erich J. Neuhold, Christine Parent, Kai-Uwe Sattler, Monica Scannapieco, Stefano Spaccapietra, Peter Spyns, and Guy De Tr´eWe introduce a novel view on how to deal with the problems of semantic interoperability in distributed systems. This view is based on the concept of emergent semantics, which sees both the representation of semantics and the discovery of the proper interpretation of symbols as the result of a self-organizing process performed by distributed agents exchanging symbols and having utilities dependent on the proper interpretation of the symbols. This is a complex systems perspective on the problem of dealing with semantics. We highlight some of the distinctive features of our vision and point out preliminary examples of its applicatio

    Towards technological approaches for concept maps mining from text

    Get PDF
    ABSTRACT: Concept maps are resources for the representation and construction of knowledge. They allow showing, through concepts and relationships, how knowledge about a subject is organized. Technological advances have boosted the development of approaches for the automatic construction of a concept map, to facilitate and provide the benefits of that resource more broadly. Due to the need to better identify and analyze the functionalities and characteristics of those approaches, we conducted a detailed study on technological approaches for automatic construction of concept maps published between 1994 and 2016 in the IEEE Xplore, ACM and Elsevier Science Direct data bases. From this study, we elaborate a categorization defined on two perspectives, Data Source and Graphic Representation, and fourteen categories. That study collected 30 relevant articles, which were applied to the proposed categorization to identify the main features and limitations of each approach. A detailed view on these approaches, their characteristics and techniques are presented enabling a quantitative analysis. In addition, the categorization has given us objective conditions to establish new specification requirements for a new technological approach aiming at concept maps mining from texts

    On the Relevance of Classification Theory to Database Design

    Get PDF

    AN INTERVAL TYPE 2 FUZZY EVIDENTIAL REASONING APPROACH TO PERSONNEL RECRUITMENT

    Get PDF
    Recruitment process is a procedure of selecting an ideal candidate amongst different applicants who suit the qualifications required by the given institution in the best way. Due to the multi criteria nature of the recruitment process, it involves contradictory, numerous and incommensurable criteria that are based on quantitative and qualitative measurements. Quantitative criteria evaluation are not always dependent on the judgement of the expert, they are expressed in either monetary terms or engineering measurements, meanwhile qualitative criteria evaluation depend on the subjective judgement of the decision maker, human evaluation which is often characterized with subjectivity and uncertainties in decision making. Given the uncertain, ambiguous, and vague nature of recruitment process there is need for an applicable methodology that could resolve various inherent uncertainties of human evaluation during the decision making process. This work thus proposes an interval type 2 fuzzy evidential reasoning approach to recruitment process. The approach is in three phases; in the first phase in order to capture word uncertainty an interval type 2(IT2) fuzzy set Hao and Mendel Approach (HMA) is proposed to model the qualification requirement for recruitment process. This approach will cater for both intra and inter uncertainty in decision makers’judgments and demonstrates agreements by all subjects (decision makers) for the regular overlap of subject data intervals and the manner in which data intervals are collectively classified into their respective footprint of uncertainty. In the second phase the Intervaltype 2 fuzzy Analytical hierarchical process was employed as the weighting model to determine the weight of each criterion gotten from the decision makers. In the third phase the interval type 2 fuzzy was hybridized with the ranking evidential reasoning algorithm to evaluate each applicant to determine their final score in order to choose the most ideal candidate for recruitment.The implementation tool for phase two and three is Java programming language. Application of this proposed approach in recruitment process will resolve both intra and inter uncertainty in decision maker’s judgement and give room for consistent ranking even in place of incomplete requirement

    Partner selection in sustainable supply chains: a fuzzy ensemble learning model

    Get PDF
    With the increasing demands on businesses to operate more sustainably, firms must ensure that the performance of their whole supply chain in sustainability is optimized. As partner selection is critical to supply chain management, focal firms now need to select supply chain partners that can offer a high level of competence in sustainability. This paper proposes a novel multi-partner classification model for the partner qualification and classification process, combining ensemble learning technology and fuzzy set theory. The proposed model enables potential partners to be classified into one of four categories (strategic partner, preference partner, leverage partner and routine partner), thereby allowing distinctive partner management strategies to be applied for each category. The model provides for the simultaneous optimization of both efficiency in its use of multi-partner and multi-dimension evaluation data, and effectiveness in dealing with the vagueness and uncertainty of linguistic commentary data. Compared to more conventional methods, the proposed model has the advantage of offering a simple classification and a stable prediction performance. The practical efficacy of the model is illustrated by an application in a listed electronic equipment and instrument manufacturing company based in southeastern China
    • …
    corecore