90 research outputs found

    A hybrid OSVM-OCNN Method for Crop Classification from Fine Spatial Resolution Remotely Sensed Imagery

    Get PDF
    Accurate information on crop distribution is of great importance for a range of applications including crop yield estimation, greenhouse gas emission measurement and management policy formulation. Fine spatial resolution (FSR) remotely sensed imagery provides new opportunities for crop mapping at a detailed level. However, crop classification from FSR imagery is known to be challenging due to the great intra-class variability and low inter-class disparity in the data. In this research, a novel hybrid method (OSVM-OCNN) was proposed for crop classification from FSR imagery, which combines a shallow-structured object-based support vector machine (OSVM) with a deep-structured object-based convolutional neural network (OCNN). Unlike pixel-wise classification methods, the OSVM-OCNN method operates on objects as the basic units of analysis and, thus, classifies remotely sensed images at the object level. The proposed OSVM-OCNN harvests the complementary characteristics of the two sub-models, the OSVM with effective extraction of low-level within-object features and the OCNN with capture and utilization of high-level between-object information. By using a rule-based fusion strategy based primarily on the OCNN’s prediction probability, the two sub-models were fused in a concise and effective manner. We investigated the effectiveness of the proposed method over two test sites (i.e., S1 and S2) that have distinctive and heterogeneous patterns of different crops in the Sacramento Valley, California, using FSR Synthetic Aperture Radar (SAR) and FSR multispectral data, respectively. Experimental results illustrated that the new proposed OSVM-OCNN approach increased markedly the classification accuracy for most of crop types in S1 and all crop types in S2, and it consistently achieved the most accurate accuracy in comparison with its two object-based sub-models (OSVM and OCNN) as well as the pixel-wise SVM (PSVM) and CNN (PCNN) methods. Our findings, thus, suggest that the proposed method is as an effective and efficient approach to solve the challenging problem of crop classification using FSR imagery (including from different remotely sensed platforms). More importantly, the OSVM-OCNN method is readily generalisable to other landscape classes and, thus, should provide a general solution to solve the complex FSR image classification problem

    Road Information Extraction from Mobile LiDAR Point Clouds using Deep Neural Networks

    Get PDF
    Urban roads, as one of the essential transportation infrastructures, provide considerable motivations for rapid urban sprawl and bring notable economic and social benefits. Accurate and efficient extraction of road information plays a significant role in the development of autonomous vehicles (AVs) and high-definition (HD) maps. Mobile laser scanning (MLS) systems have been widely used for many transportation-related studies and applications in road inventory, including road object detection, pavement inspection, road marking segmentation and classification, and road boundary extraction, benefiting from their large-scale data coverage, high surveying flexibility, high measurement accuracy, and reduced weather sensitivity. Road information from MLS point clouds is significant for road infrastructure planning and maintenance, and have an important impact on transportation-related policymaking, driving behaviour regulation, and traffic efficiency enhancement. Compared to the existing threshold-based and rule-based road information extraction methods, deep learning methods have demonstrated superior performance in 3D road object segmentation and classification tasks. However, three main challenges remain that impede deep learning methods for precisely and robustly extracting road information from MLS point clouds. (1) Point clouds obtained from MLS systems are always in large-volume and irregular formats, which has presented significant challenges for managing and processing such massive unstructured points. (2) Variations in point density and intensity are inevitable because of the profiling scanning mechanism of MLS systems. (3) Due to occlusions and the limited scanning range of onboard sensors, some road objects are incomplete, which considerably degrades the performance of threshold-based methods to extract road information. To deal with these challenges, this doctoral thesis proposes several deep neural networks that encode inherent point cloud features and extract road information. These novel deep learning models have been tested by several datasets to deliver robust and accurate road information extraction results compared to state-of-the-art deep learning methods in complex urban environments. First, an end-to-end feature extraction framework for 3D point cloud segmentation is proposed using dynamic point-wise convolutional operations at multiple scales. This framework is less sensitive to data distribution and computational power. Second, a capsule-based deep learning framework to extract and classify road markings is developed to update road information and support HD maps. It demonstrates the practical application of combining capsule networks with hierarchical feature encodings of georeferenced feature images. Third, a novel deep learning framework for road boundary completion is developed using MLS point clouds and satellite imagery, based on the U-shaped network and the conditional deep convolutional generative adversarial network (c-DCGAN). Empirical evidence obtained from experiments compared with state-of-the-art methods demonstrates the superior performance of the proposed models in road object semantic segmentation, road marking extraction and classification, and road boundary completion tasks

    A review of different deep learning techniques for sperm fertility prediction

    Get PDF
    Sperm morphology analysis (SMA) is a significant factor in diagnosing male infertility. Therefore, healthy sperm detection is of great significance in this process. However, the traditional manual microscopic sperm detection methods have the disadvantages of a long detection cycle, low detection accuracy in large orders, and very complex fertility prediction. Therefore, it is meaningful to apply computer image analysis technology to the field of fertility prediction. Computer image analysis can give high precision and high efficiency in detecting sperm cells. In this article, first, we analyze the existing sperm detection techniques in chronological order, from traditional image processing and machine learning to deep learning methods in segmentation and classification. Then, we analyze and summarize these existing methods and introduce some potential methods, including visual transformers. Finally, the future development direction and challenges of sperm cell detection are discussed. We have summarized 44 related technical papers from 2012 to the present. This review will help researchers have a more comprehensive understanding of the development process, research status, and future trends in the field of fertility prediction and provide a reference for researchers in other fields

    PCNN-Based Image Fusion in Compressed Domain

    Get PDF
    This paper addresses a novel method of image fusion problem for different application scenarios, employing compressive sensing (CS) as the image sparse representation method and pulse-coupled neural network (PCNN) as the fusion rule. Firstly, source images are compressed through scrambled block Hadamard ensemble (SBHE) for its compression capability and computational simplicity on the sensor side. Local standard variance is input to motivate PCNN and coefficients with large firing times are selected as the fusion coefficients in compressed domain. Fusion coefficients are smoothed by sliding window in order to avoid blocking effect. Experimental results demonstrate that the proposed fusion method outperforms other fusion methods in compressed domain and is effective and adaptive in different image fusion applications
    • …
    corecore