1,150 research outputs found

    Investigating Biointerfacial Interactions in the Development of Epidemic Thunderstorm Asthma

    Full text link
    Epidemic thunderstorm asthma (ETSA) outbreaks are triggered by airborne pollen allergens combined with thunderstorm activity. ETSA can affect anyone, as observed in the world’s largest ETSA event in Australia. Allergens from rye grass pollen affect the respiratory airways and the fundamental physicochemical causes, biochemical interactions, and the role of the thunderstorm in ETSA have been the source of much speculation. In this thesis, the physicochemical interactions of thunderstorm-derived reactive oxygen nitrogen species (RONS) and pollen-derived molecules are examined. It is hypothesised that RONS from the plasma-activated water (PAW) react with the airborne pollen allergens, exerting physicochemical changes to enhance allergenicity and subsequently causing ETSA. Simple biomimetic models are demonstrated, examining the key biointerfacial interactions and the influences of the conditions of plasma formation, pH, and temperature, employing advanced interface-sensitive techniques including QCM-D and neutron reflectometry. Firstly, cellulose-mucin interactions were analysed, mimicking the interactions between the walls of inhaled pollen (intine) and mucosa of the respiratory tract (mucin). Interaction with plasma-treated cellulose surfaces led to adsorption and conformational alterations to mucin, potentially indicating changes to the permeability of the mucosa. Secondly, the effect of PAW on the interactions between a model-allergen plant protein and lipid monolayers mimicking alveolar surfactant was studied. The protein took up RONS and PAW-treated protein showed stronger adsorption to the lipid monolayers, implying PAW-treatment enhances transport of the protein into lung tissue. Lastly, the effect of PAW on allergen penetration into epithelial bilayers was elucidated. Solid-supported model lipid bilayers were allowed to interact with model allergen and rye grass derived proteins to deduce the structural integrity of the membrane. PAW-treatment increased adsorption of the proteins to the lipid bilayers, and enabled the penetration into the membrane, corroborating the enhanced allergenicity of PAW-treated allergens. Overall, PAW was seen to enhance three relevant nonspecific biointerfacial interactions; these physicochemical studies complement extant in vitro cell studies in an effort to enable the development of effective monitoring platforms, diagnostics, and therapeutic interventions for the prevention and treatment of ETSA

    Computational Approaches to Drug Profiling and Drug-Protein Interactions

    Get PDF
    Despite substantial increases in R&D spending within the pharmaceutical industry, denovo drug design has become a time-consuming endeavour. High attrition rates led to a long period of stagnation in drug approvals. Due to the extreme costs associated with introducing a drug to the market, locating and understanding the reasons for clinical failure is key to future productivity. As part of this PhD, three main contributions were made in this respect. First, the web platform, LigNFam enables users to interactively explore similarity relationships between ‘drug like’ molecules and the proteins they bind. Secondly, two deep-learning-based binding site comparison tools were developed, competing with the state-of-the-art over benchmark datasets. The models have the ability to predict offtarget interactions and potential candidates for target-based drug repurposing. Finally, the open-source ScaffoldGraph software was presented for the analysis of hierarchical scaffold relationships and has already been used in multiple projects, including integration into a virtual screening pipeline to increase the tractability of ultra-large screening experiments. Together, and with existing tools, the contributions made will aid in the understanding of drug-protein relationships, particularly in the fields of off-target prediction and drug repurposing, helping to design better drugs faster

    Characterization of the SAM-key – a conserved regulatory domain of the Fun30 nucleosome remodeler

    Get PDF
    Cells need to constantly access their genetic material. However, in eukaryotic cells, DNA is compactly wrapped around nucleosomes and their presence poses a barrier for DNA transactions. To facilitate access, eukaryotes use ATP-driven molecular machines that dynamically shape chromatin structure, called nucleosome remodelers. Budding yeast Fun30 is the prototype member of the Fun30-SMARCAD1-ETL sub-family of nucleosome remodelers important for DNA repair and gene silencing. While the catalytic mechanism has been elucidated for several remodelers, for this family of single-subunit remodelers we lack mechanistic understanding. Here we report the discovery of the SAM-key, an evolutionary conserved domain with a sterile alpha motif (SAM)-like fold with one characteristic, long, protruding helix, using structure prediction, multiple sequence alignment and biochemical characterization. The SAM-key is crucial for Fun30 function, as deletion of the SAM-key from FUN30 in budding yeast leads to DNA repair and gene silencing defects similar to a deletion of FUN30. Biochemical and biophysical characterization of the SAM-key mutant in vitro showed similar folding and stability as wildtype Fun30 as well as wildtype-level binding to DNA and nucleosomes. However, the mutant is deficient in DNA-stimulated ATP hydrolysis as well as nucleosome sliding and eviction. Structure prediction using AlphaFold2 models interaction of the long helix of the SAM-key with protrusion I, a structural element of the conserved 2-lobed ATPase domain that controls catalytic activity in other remodelers. We verified the model and the interaction by crosslinking-mass spectrometry and mutation of the interface with a double point mutant Fun30-ICRR, which phenocopies the SAM-key deletion with defective ATPase activity and nucleosome remodeling. This confirms a regulatory role for the interaction of the SAM-key helix with protrusion I. Our data thereby demonstrate a central role of the SAM-key domain in mediating the activation of Fun30 catalytic activity, a new insight into the biology of this protein and highlighting the importance of allosteric activation for nucleosome remodelers

    The Influence of Allostery Governing the Changes in Protein Dynamics Upon Substitution

    Get PDF
    The focus of this research is to investigate the effects of allostery on the function/activity of an enzyme, human immunodeficiency virus type 1 (HIV-1) protease, using well-defined statistical analyses of the dynamic changes of the protein and variants with unique single point substitutions 1. The experimental data1 evaluated here only characterized HIV-1 protease with one of its potential target substrates. Probing the dynamic interactions of the residues of an enzyme and its variants can offer insight of the developmental importance for allosteric signaling and their connection to a protein’s function. The realignment of the secondary structure elements can modulate the mobility along with the frequency of residue contacts as well as which residues are making contact together2-5. We postulate that if there are more contacts occurring within a structure the mobility is being constrained and therefore gaining novel contacts can negatively influence the function of a protein. The evolutionary importance of protein dynamics is probed by analyzing the residue positions possessing significant correlations and the relationship between experimental information1 (variant activities). We propose that the correlated dynamics of residues observed to have considerable correlations, if disrupted, can be used to infer the function of HIV-1 protease and its variants. Given the robustness of HIV-1 protease the identification of any significant constraint imposed on the dynamics from a potential allosteric site found to disrupt the catalytic activity of the variant is not plainly evident. We also develop machine learning (ML) algorithms to predict the protein function/activity change caused by a single point substitution by using the DCC of each residue pair. Recognition of any substantial association between the dynamics of specific residues and allosteric communication or mechanism requires detailed examination of the dynamics of HIV-1 protease and its variants. We also explore the non-linear dependency between each pair of residues using Mutual Information (MI) and how it can influence the dynamics of HIV-1 protease and its variants. We suggest that if the residues of a protein receive more or less information than that of the WT it will adversely impact the function of the protein and can be used to support the classification of a variant structure. Furthermore, using the MI of residues obtained from the MD simulations for the HIV-1 protease structure, we build a ML model to predict a protein’s change in function caused by a single point substitution. Effectively the mobility, dynamics, and non-linear features tested in these studies are found to be useful towards the prediction of potentially drug resistant substitutions related to the catalytic efficiency of HIV-1 protease and the variants

    Accelerating Antimicrobial Peptide Discovery with Latent Structure

    Full text link
    Antimicrobial peptides (AMPs) are promising therapeutic approaches against drug-resistant pathogens. Recently, deep generative models are used to discover new AMPs. However, previous studies mainly focus on peptide sequence attributes and do not consider crucial structure information. In this paper, we propose a latent sequence-structure model for designing AMPs (LSSAMP). LSSAMP exploits multi-scale vector quantization in the latent space to represent secondary structures (e.g. alpha helix and beta sheet). By sampling in the latent space, LSSAMP can simultaneously generate peptides with ideal sequence attributes and secondary structures. Experimental results show that the peptides generated by LSSAMP have a high probability of antimicrobial activity. Our wet laboratory experiments verified that two of the 21 candidates exhibit strong antimicrobial activity. The code is released at https://github.com/dqwang122/LSSAMP.Comment: KDD 202

    Analysis, Design and Fabrication of Micromixers, Volume II

    Get PDF
    Micromixers are an important component in micrototal analysis systems and lab-on-a-chip platforms which are widely used for sample preparation and analysis, drug delivery, and biological and chemical synthesis. The Special Issue "Analysis, Design and Fabrication of Micromixers II" published in Micromachines covers new mechanisms, numerical and/or experimental mixing analysis, design, and fabrication of various micromixers. This reprint includes an editorial, two review papers, and eleven research papers reporting on five active and six passive micromixers. Three of the active micromixers have electrokinetic driving force, but the other two are activated by mechanical mechanism and acoustic streaming. Three studies employs non-Newtonian working fluids, one of which deals with nano-non-Newtonian fluids. Most of the cases investigated micromixer design

    The compatible solutes ectoine and 5-hydroxyectoine: Catabolism and regulatory mechanisms

    Get PDF
    To cope with osmotic stress many microorganisms make use of short, osmotically active, organic compounds, the so-called compatible solutes. Examples for especially effective members of this type of molecules are the tetrahydropyrimidines ectoine and 5-hydroxyectoine. Both molecules are produced by a large number of microorganisms, not only to fend-off osmotic stress, but also for example low and high temperature challenges. The biosynthetic pathway used by these organisms to synthesize ectoines has already been studied intensively and the enzymes used therein are characterized quite well, both biochemically as well as structurally. However, synthesis of ectoines is only half the story. Inevitably, ectoines are frequently released from the producer cells in different environmental settings. Especially in highly competitive habitats like the upper ocean layers some bacteria specialized on a niche like this. The model organism used in this work is such a species. It is the marine bacterium Ruegeria pomeroyi DSS-3 which belongs to the Roseobacter-clade. Roseobacter species are heterotrophic Proteobacteria which can live in symbiosis with phytoplankton as well as turning against them in a bacterial warfare fashion to scavenge valuable nutrients. Ectoines can be imported by R. pomeroyi DSS-3 in a high-affinity fashion and be used as energy as well as carbon- and nitrogen-sources. To achieve this, both ectoines rings are degraded by the hydrolase EutD and deacetylated by the deacetylase EutE. The first hydrolysis products α-ADABA (from ectoine) and hydroxy-α-ADABA (from hydroxyectoine) are deacetylated to DABA and hydroxy-DABA which are in additional biochemical reactions transformed to aspartate to fuel the cell’s central metabolism. The role and functioning of the EutDE enzymes which work in a concerted fashion are a central aspect of this work. Both enzymes could be biochemically and structurally characterized, and the architecture of the metabolic pathway could be illuminated. α-ADABA and hydroxy-α-ADABA are not only central to ectoine catabolism, but also to the regulatory mechanisms associated with it. Both molecules serve as inducers of the central regulatory protein of this pathway, the MocR-/GabR-type regulator protein EnuR. In the framework of this dissertation molecular details could be clarified which enable the EnuR repressor molecule to sense both molecules with high affinity to subsequently derepress the genes for the import and catabolism of ectoines

    Molecular modeling of drug delivery systems based on carbon nanostructures: structure, function, and potential applications for anticancer complexes of Pt(II)

    Get PDF
    The medication with Pt(II) drugs (cisplatin, carboplatin, and oxaliplatin) has been an effective alternative for treating cancers due to their notable inhibition of cancer cells growth and the prevention of metastasis. Nevertheless, the low selectivity of these metallodrugs for malignant cells produces severe side effects, which limit this chemotherapy. In this context, carbon nanohorns (CNHs) have been considered potential nanovectors for drugs, since they present low toxicity, drug-loading capacity, biodegradation routes, and biocompatibility when oxidized. However, there is still a lack of studies regarding the molecular behavior of these nanocarriers on cell membranes. The present work aims to characterize the interactions between inclusion complexes drug@CNH, which are formed by platinum drugs encapsulated in CNHs, and plasma membranes by using molecular dynamics simulations. The results demonstrated that the van der Waals contribution played a primary role (∼74%) for the complex stability, which explain the confined dynamics of drugs inside the CNHs. The free energy profiles revealed an endergonic character of the drug release processes from CNHs, in which the energy barrier for oxaliplatin release (~24 kcal mol–1 ) was ~30% larger than those for carboplatin and cisplatin (~18 kcal mol-1 ). The simulations also showed four stages of the interaction mechanism CNH--membrane: approach, insertion, permeation, and internalization. Despite the low structural disturbance of the membranes, the free energy barrier of ∼55 kcal mol-1 for the CNHs translocation indicated that this transport is kinetically unfavorable by passive process. The in silico experiments evidenced that the most likely mechanism of cisplatin delivery from CNHs involve the approach and insertion stages, where the nanovector adheres on the surface of cancer cells, as reported in in vitro studies. After this retention, the drug load may be slowly released in the tumor site. Finally, simulations of the cellular uptake of Pt(II) drugs also pointed out significant energy barriers (~30 kcal mol-1 ) for this process, which reflects their low permeability in membranes as discussed in experimental studies. In addition to reinforcing the potential of CNH as nanovector of Pt(II) drugs, the results presented in this thesis may assist and drive new experimental studies with CNHs, focusing on the development of less aggressive formulations for cancer treatments.A medicação com fármacos a base de Pt(II) (cisplatina, carboplatina e oxaliplatina) tem sido uma alternativa efetiva para tratar cânceres devido à sua notável inibição do crescimento de células cancerosas e a prevenção de metástases. No entanto, a baixa seletividade dessas metalodrogas por células cancerosas gera severos efeitos colaterais. Nesse contexto, nanohorns de carbono (CNHs) têm sido considerados potenciais nanovetores de fármacos, devido a baixa toxicidade, capacidade de carreamento de fármacos, rotas de biodegradação, e biocompatibilidade quando oxidados. Porém, existe uma carência de estudos tratando o comportamento desses nanocarreadores em biomembranas. Esse trabalho tem como objetivo caracterizar as interações entre complexos de inclusão fármaco@CNH, formados por fármacos de Pt(II) encapsulados em CNHs, e membranas usando simulações por dinâmica molecular. Os resultados demonstraram que a contribuição de van der Waals teve um papel primário (∼74%) na estabilidade dos complexos, o que explica a dinâmica confinada dos fármacos dentro dos CNHs. Os perfis de energia livre revelaram o caráter endergônico da liberação dos fármacos a partir de CNHs, nos quais a barreira de energia para a liberação da oxaliplatina (~24 kcal mol– 1 ) é ~30% maior do que aquelas para carboplatina e cisplatina. As simulações mostraram quatro estágios do mecanismo de interação CNH-membrana: aproximação, inserção, permeação e internalização. Apesar do baixo distúrbio estrutural das membranas, a barreira de energia livre de ∼55 kcal mol-1 para a translocação de CNHs indicou que esse transporte é desfavorável cineticamente via o processo passivo. Os experimentos in silico evidenciam que o mecanismo mais provável de entrega de cisplatina a partir de CNHs envolve a aproximação e inserção, onde o nanovetor adere na superfície de células cancerosas, como reportado em estudos in vitro. Após essa retenção, a carga de fármaco deve ser ligeiramente liberada no tumor. As simulações de captação celular de fármacos de Pt(II) também apontaram barreiras de energia significativas (∼30 kcal mol-1 ) para esse processo, o que reflete a baixa permeabilidade deles em membranas como discutido em estudos experimentais. Além de reforçar o potencial de CNHs como nanovetores de fármacos de Pt(II), os resultados apresentados nessa tese podem auxiliar e impulsionar novos estudos com CNHs, focando no desenvolvimento de formulações menos agressivas para tratamentos de câncer.FAPEMIG - Fundação de Amparo à Pesquisa do Estado de Minas Gerai

    Synthetic glycans for structural studies: the importance of the modification pattern

    Get PDF
    Carbohydrates are the most abundant organic compounds in nature. They serve as energy sources, regulate a plethora of biological processes, and are essential structural components in animals, plants and microorganisms. The structural diversity of carbohydrates results in materials with extremely different properties. Still, structure-property correlations are hardly established for carbohydrates due to the difficulty in obtaining pure, well-defined molecules and the lack of suitable analytical methods. A comprehensive understanding of carbohydrate function requires a detailed understanding and thorough elucidation of the carbohydrate's structure. The ultimate goal of this thesis is to establish correlations between the structure and the properties of carbohydrates and shine light on how small modifications affect the shape of carbohydrates. To achieve this goal, automated glycan assembly (AGA) is used as a platform to produce well-defined oligosaccharide probes. Molecular dynamic (MD) simulations are performed to address conformational aspects of oligosaccharides at the atomic level and to support the structural analysis
    • …
    corecore