414 research outputs found

    A Reduced Power Switches Count Multilevel Converter-Based Photovoltaic System with Integrated Energy Storage

    Get PDF
    A multilevel topology for photovoltaic (PV) systems with integrated energy storage (ES) is presented in this article. Both PV and ES power cells are connected in series to form a dc link, which is then connected to an H-bridge to convert the dc voltage to an ac one. The main advantage of the proposed converter compared to the cascaded-H-bridge (CHB) converter, as well as compared to the available multilevel topologies, is that fewer semiconductor devices are needed here. As the output voltage levels increase, more switches are saved, which results in a more efficient, cheaper, and smaller converter. So far, there is still no modulation strategy that is designed particularly for PV-fed multilevel converters with built-in ES. The standard modulations are impractical for such an application since they suffer from deficiencies, such as polluted output signals - thus, requiring larger output filter - and overmodulation. A modified modulation strategy for PV+ES multilevel inverters is, therefore, introduced in this article. The proposal has been simulated and experimentally validated to evaluate its effectiveness, where it has been shown that the proposed topology is not exclusively feasible, but also suffers from less conduction and switching loss, achieving higher efficiency with respect to its counterpart CHB. </p

    Grid-Connected Single-Star Bridge-Cells Modular Multilevel Cascaded Converter with Selective Harmonic Elimination Techniques

    Get PDF
    Nowadays, Renewable Energy Sources (RESs) are receiving enormous attention due to the noticeable exhaustion of fossil fuel and its emission of greenhouse gases. DC-AC converters have attracted the attention of the researchers, as they are entailed to integrate RESs to the grid to comply with the grid frequency and voltage requirements. Due to the high penetration of RESs, especially with elevated power levels, high-power converters are needed, which necessitates higher voltage and current ratings of the semiconductor devices. The unavailability of high voltage semiconductor devices has directed the attention to the use of either series connection of semiconductor devices or Multilevel Inverters (MLIs). MLIs allow using several low rated semiconductors to hold the high output power of the inverter. The MLI output waveform is close to sinusoidal in nature, therefore it may require a small filter to enhance the output power quality. There are many types of MLIs, where the most common MLIs are Flying Capacitor, Diode Clamped, and Modular Multilevel Cascaded Converter (MMCC). The MMCC can be classified into three main formations, the Single-Star Bridge-Cells MMCC (SSBC-MMCC), the Double-Star Bridge-Cells MMCC (DSBC-MMCC), and the Double-Star Chopper-Cells MMCC (DSCC-MMCC). The main advantage of the MMCC is the modularity and scalability. In addition, the MMCC does not require any clamping diodes or flying capacitors for clamping the voltage across the switches. In this thesis, the MMCC will be used to integrate high-power RESs to Grid. Nevertheless, the high-power applications necessitate low switching frequency operations. One of the most common controlling techniques of MLI with low frequency operation is the Selective Harmonic Elimination (SHE). SHE insures also the output current Total Harmonic Distortion (THD) to be minimized. One disadvantage of the SHE method is that the complexity of the algorithm along with the equations used is increased by the increase of the MMCC number of levels. Therefore, other alternatives of SHE techniques will be studied in this work to overcome this complexity. This thesis focuses typically on MMCC, particularly the SSBC-MMCC. In this work, a high-power grid-connected SSBC-MMCC is controlled with three different SHE techniques, complying with low switching frequency operation limitation in high-power applications. In addition to the Conventional SHE (C-SHE) technique, Quasi-SHE (Q-SHE) and Asymmetrical-SHE (A-SHE) approaches are proposed and assessed. Q-SHE and A-SHE approaches are based on eliminating selected low order harmonics (for instance, eliminating the fifth and seventh order harmonics), irrelevant to the number of employed levels provided that the number of levels allows for the required harmonic elimination. Compared with the C-SHE approach, the Q-SHE and A-SHE require less computational burden in solving the required equation groups, especially when a high number of levels and/or multiple switching angles for each voltage level are needed, while maintaining the same dv/dt of the output voltage. A 5MW, 17-level, grid-connected SSBC-MMCC, controlled in the synchronous rotating reference frame, is employed for assessing the addressed SHE techniques. The assessment is validated through simulation results using Matlab/Simulink platform

    Z Source Inverter Topologies-A Survey

    Get PDF
    Need for alternative energy sources to satisfy the rising demand in energy consumption elicited the research in the area of power converters/inverters. An increasing interest of using Z source inverter/converter in power generation involving renewable energy sources like wind and solar energy for both off grid and grid tied schemes were originated from 2003. This paper surveys the literature of Z source inverters/converter topologies that were developed over the years

    Harmonics Mitigation in Cascaded Multilevel PV Inverters During Power Imbalance Between Cells

    Get PDF
    This paper presents a grid connected multilevel topology for photovoltaic (PV) systems. Usually, multilevel converters for PV application suffer from a distorted output current and voltage when the submodules are not subjected to an even solar irradiance. The difference in submodules irradiance results in different submodules duty cycles when maintaining the maximum power point tracking (MPPT). The distortion of the output current is proportional with the difference of the cells duty cycles. To this regard, a multilevel topology for PV applications is proposed along with a control and modulation strategy. In this proposed topology, H6 bridge-based cell is used instead of an H-bridge one. In case of solar irradiance mismatch, the proposed converter injects power with less voltage from the shaded cells without altering the PV voltage, and hence, the MPPT. This modification allows retaining a tantamount duty cycle in all cells whatever the meteorological conditions are present. To test the effectiveness of the proposed idea, a detailed simulation model was set up. The results show that the proposed concept provides a significantly improved output current quality compared to the cascaded H-bridge topology

    Power Converters in Power Electronics

    Get PDF
    In recent years, power converters have played an important role in power electronics technology for different applications, such as renewable energy systems, electric vehicles, pulsed power generation, and biomedical sciences. Power converters, in the realm of power electronics, are becoming essential for generating electrical power energy in various ways. This Special Issue focuses on the development of novel power converter topologies in power electronics. The topics of interest include, but are not limited to: Z-source converters; multilevel power converter topologies; switched-capacitor-based power converters; power converters for battery management systems; power converters in wireless power transfer techniques; the reliability of power conversion systems; and modulation techniques for advanced power converters

    Quasi impedance source based high power medium voltage converter for grid integration of distributed energy sources

    Get PDF
    The next generation of Power Electronics systems would need to be able to work at higher power levels, higher switching frequencies, compact size, and higher ambient temperatures, as well as should have improved energy efficiency than existing Silicon (Si) devices. As a result, new wide bandgap semiconductor technologies must be introduced to address Si's physical limitations. Silicon Carbide (SiC) devices are becoming popular because of their outstanding properties that address all the requirements of the next generation Power Electronics system. On the other hand, the converter topology still plays a major role in deciding the overall system performance. Hence the major objective of this dissertation is to devise new multilevel quasi impedance source (qZS) based converter topologies using SiC devices to achieve a compact, highly efficient, and modular solution for grid integration of Solar PV Energy Source to the utility grid. Other objectives include modification in the PWM methods to address the problem of unequal power-sharing in Solar PV multilevel converters. By using qZS as the front-end power converter several different power converter topologies have been developed and presented in this dissertation. The detailed design, modulation, loss analysis, and control have been developed for multi module cascaded structure. Level-shifted PWM technique is developed at first for two cascaded modules which are similar to the standard Phase opposed disposed Pulse width modulation (PODPWM). However, this control method cannot be directly applied to a higher number of modules. For more than two cascaded modules a unified combined hybrid PWM technique is developed and presented. During normal balanced operation, the power among the modules is unequal. To address the unequal power sharing problem, further modification in the PWM technique is done called the Carrier rotation technique. For providing the isolation between the low voltage PV panels and the high voltage AC grid, a modified Inverter topology, and a new modulation technique is developed. The presented technique, however, is limited to a single module, and more research is needed to implement for cascaded structure. Front-end qZS based single-stage DC-AC-DC converter is developed as an alternative of one of the most popular conventional dual active bridge (DAB) converter. The proposed converter offers reduced component count while maintaining the continuous input current. The detailed operation, modulation technique, simulation, and experimental result are presented to show the superiority of the developed qZS Cascaded Multilevel Converter. The developed power converter has strong commercialization potentia
    • …
    corecore