198,647 research outputs found

    Immersed Boundary Smooth Extension: A high-order method for solving PDE on arbitrary smooth domains using Fourier spectral methods

    Full text link
    The Immersed Boundary method is a simple, efficient, and robust numerical scheme for solving PDE in general domains, yet it only achieves first-order spatial accuracy near embedded boundaries. In this paper, we introduce a new high-order numerical method which we call the Immersed Boundary Smooth Extension (IBSE) method. The IBSE method achieves high-order accuracy by smoothly extending the unknown solution of the PDE from a given smooth domain to a larger computational domain, enabling the use of simple Cartesian-grid discretizations (e.g. Fourier spectral methods). The method preserves much of the flexibility and robustness of the original IB method. In particular, it requires minimal geometric information to describe the boundary and relies only on convolution with regularized delta-functions to communicate information between the computational grid and the boundary. We present a fast algorithm for solving elliptic equations, which forms the basis for simple, high-order implicit-time methods for parabolic PDE and implicit-explicit methods for related nonlinear PDE. We apply the IBSE method to solve the Poisson, heat, Burgers', and Fitzhugh-Nagumo equations, and demonstrate fourth-order pointwise convergence for Dirichlet problems and third-order pointwise convergence for Neumann problems

    A local grid refinement technique based upon Richardson extrapolation

    Get PDF
    A grid-embedding technique for the solution of two-dimensional incompressible flows governed by the Navier-Stokes equations is presented. A single coarse grid covers the whole domain, and local grid refinement B carried out in the regions of high gradients without changing the basic grid structure. A finite volume method with collocated primitive variables is employed, ensuring conservation at the interfaces of embedded grids, as well as global conservation. The method is applied to the simulation of a turbulent flow past a backward facing step, the flow over a square obstacle, and the flow in a sudden pipe expansion, and the predictions are compared with data published in the literature. They show that neither the convergence rate nor the stability of the method are affected by the presence of embedded grids. The grid-embedding technique yields significant savings in computing time to achieve the same accuracy obtained wing conventional grids. (C) 1997 by Elsevier Science Inc

    Decidability of predicate logics with team semantics

    Get PDF
    We study the complexity of predicate logics based on team semantics. We show that the satisfiability problems of two-variable independence logic and inclusion logic are both NEXPTIME-complete. Furthermore, we show that the validity problem of two-variable dependence logic is undecidable, thereby solving an open problem from the team semantics literature. We also briefly analyse the complexity of the Bernays-Sch\"onfinkel-Ramsey prefix classes of dependence logic.Comment: Extended version of a MFCS 2016 article. Changes on the earlier arXiv version: title changed, added the result on validity of two-variable dependence logic, restructurin

    Externalizing the lateral-boundary conditions from the dynamic core in semi-implicit semi-Lagrangian models

    Get PDF
    Research is still undertaken to develop so-called transparent lateral boundary conditions (LBC) for limited-area numerical weather prediction models. In the widely used semi-implicit semi-Lagrangian schemes, this naturally leads to LBC formulations that are intrinsically intertwined with the numerics of the dynamic core. This may have profound consequences for the implementation and the maintenance of future model codes. For instance, scientific development on the dynamics may be hindered by constraints coming from today's choices in the LBC formulation and vice versa. Building further on the work of Aidan McDonald, this paper proposes an approach where (1) the LBCs can be imposed by an extrinsic numerical scheme that is fundamentally different from the one used for the dynamic core in the interior domain and (2) substituting one such LBC scheme for another is possible in a manner that leaves the Helmholtz solver unmodified. It is argued that this concept may provide the necessary frame for formulating transparent boundary conditions in spectral limited-area models. Since this idea touches all aspects of the LBC problem, its feasibility can only be established by a rigorous systematic approach. As a first step, this paper provides promising experimental support in a one-dimensional shallow-water model
    • …
    corecore