159 research outputs found

    A new graph parameter related to bounded rank positive semidefinite matrix completions

    Get PDF
    The Gram dimension \gd(G) of a graph GG is the smallest integer k≥1k\ge 1 such that any partial real symmetric matrix, whose entries are specified on the diagonal and at the off-diagonal positions corresponding to edges of GG, can be completed to a positive semidefinite matrix of rank at most kk (assuming a positive semidefinite completion exists). For any fixed kk the class of graphs satisfying \gd(G) \le k is minor closed, hence it can characterized by a finite list of forbidden minors. We show that the only minimal forbidden minor is Kk+1K_{k+1} for k≤3k\le 3 and that there are two minimal forbidden minors: K5K_5 and K2,2,2K_{2,2,2} for k=4k=4. We also show some close connections to Euclidean realizations of graphs and to the graph parameter ν=(G)\nu^=(G) of \cite{H03}. In particular, our characterization of the graphs with \gd(G)\le 4 implies the forbidden minor characterization of the 3-realizable graphs of Belk and Connelly \cite{Belk,BC} and of the graphs with ν=(G)≤4\nu^=(G) \le 4 of van der Holst \cite{H03}.Comment: 31 pages, 6 Figures. arXiv admin note: substantial text overlap with arXiv:1112.596

    A new graph parameter related to bounded rank positive semidefinite matrix completions.

    Get PDF
    The Gram dimension gd(G) of a graph G is the smallest inte- ger k ≥ 1 such that any partial real symmetric matrix, whose entries are specified on the diagonal and at the off-diagonal positions corresponding to edges of G, can be completed to a positive semidefinite matrix of rank at most k (assuming a positive semidefinite completion exists). For any fixed k the class of graphs satisfying gd(G) ≤ k is minor closed, hence it can characterized by a finite list of forbidden minors. We show that the only minimal forbidden minor is Kk+1 for k ≤ 3 and that there are two minimal forbidden minors: K5 and K2,2,2 for k = 4. We also show some close connections to Euclidean realizations of graphs and to the graph parameter ν=(G) of [21]. In particular, our characterization of the graphs with gd(G) ≤ 4 implies the forbidden minor characterization of the 3-realizable graphs of Belk and Connelly [8,9] and of the graphs with ν=(G) ≤ 4 of van der Holst [21]

    Forbidden minor characterizations for low-rank optimal solutions to semidefinite programs over the elliptope

    Get PDF
    We study a new geometric graph parameter \egd(G), defined as the smallest integer r≥1r\ge 1 for which any partial symmetric matrix which is completable to a correlation matrix and whose entries are specified at the positions of the edges of GG, can be completed to a matrix in the convex hull of correlation matrices of \rank at most rr. This graph parameter is motivated by its relevance to the problem of finding low rank solutions to semidefinite programs over the elliptope, and also by its relevance to the bounded rank Grothendieck constant. Indeed, \egd(G)\le r if and only if the rank-rr Grothendieck constant of GG is equal to 1. We show that the parameter \egd(G) is minor monotone, we identify several classes of forbidden minors for \egd(G)\le r and we give the full characterization for the case r=2r=2. We also show an upper bound for \egd(G) in terms of a new tree-width-like parameter \sla(G), defined as the smallest rr for which GG is a minor of the strong product of a tree and KrK_r. We show that, for any 2-connected graph G≠K3,3G\ne K_{3,3} on at least 6 nodes, \egd(G)\le 2 if and only if \sla(G)\le 2.Comment: 33 pages, 8 Figures. In its second version, the paper has been modified to accommodate the suggestions of the referees. Furthermore, the title has been changed since we feel that the new title reflects more accurately the content and the main results of the pape

    Chordal Decomposition in Rank Minimized Semidefinite Programs with Applications to Subspace Clustering

    Full text link
    Semidefinite programs (SDPs) often arise in relaxations of some NP-hard problems, and if the solution of the SDP obeys certain rank constraints, the relaxation will be tight. Decomposition methods based on chordal sparsity have already been applied to speed up the solution of sparse SDPs, but methods for dealing with rank constraints are underdeveloped. This paper leverages a minimum rank completion result to decompose the rank constraint on a single large matrix into multiple rank constraints on a set of smaller matrices. The re-weighted heuristic is used as a proxy for rank, and the specific form of the heuristic preserves the sparsity pattern between iterations. Implementations of rank-minimized SDPs through interior-point and first-order algorithms are discussed. The problem of subspace clustering is used to demonstrate the computational improvement of the proposed method.Comment: 6 pages, 6 figure

    Conic Optimization Theory: Convexification Techniques and Numerical Algorithms

    Full text link
    Optimization is at the core of control theory and appears in several areas of this field, such as optimal control, distributed control, system identification, robust control, state estimation, model predictive control and dynamic programming. The recent advances in various topics of modern optimization have also been revamping the area of machine learning. Motivated by the crucial role of optimization theory in the design, analysis, control and operation of real-world systems, this tutorial paper offers a detailed overview of some major advances in this area, namely conic optimization and its emerging applications. First, we discuss the importance of conic optimization in different areas. Then, we explain seminal results on the design of hierarchies of convex relaxations for a wide range of nonconvex problems. Finally, we study different numerical algorithms for large-scale conic optimization problems.Comment: 18 page

    Euclidean distance geometry and applications

    Full text link
    Euclidean distance geometry is the study of Euclidean geometry based on the concept of distance. This is useful in several applications where the input data consists of an incomplete set of distances, and the output is a set of points in Euclidean space that realizes the given distances. We survey some of the theory of Euclidean distance geometry and some of the most important applications: molecular conformation, localization of sensor networks and statics.Comment: 64 pages, 21 figure
    • …
    corecore