286 research outputs found
Spatial Light Modulators As Parallel Memories For Optoelectronic Neural Networks
A generic architecture for realizing neural networks is presented in which the synaptic interaction matrix is loaded in parallel into an electronic integrated circuit from a SLM. Three types of the electronic processors are described using CCD, CID and CMOS technologies respectively. The pros and cons of currently existing SLMs for this architecture are pointed out
Photonic Delay Systems as Machine Learning Implementations
Nonlinear photonic delay systems present interesting implementation platforms
for machine learning models. They can be extremely fast, offer great degrees of
parallelism and potentially consume far less power than digital processors. So
far they have been successfully employed for signal processing using the
Reservoir Computing paradigm. In this paper we show that their range of
applicability can be greatly extended if we use gradient descent with
backpropagation through time on a model of the system to optimize the input
encoding of such systems. We perform physical experiments that demonstrate that
the obtained input encodings work well in reality, and we show that optimized
systems perform significantly better than the common Reservoir Computing
approach. The results presented here demonstrate that common gradient descent
techniques from machine learning may well be applicable on physical
neuro-inspired analog computers
Photonic delay systems as machine learning implementations
Nonlinear photonic delay systems present interesting implementation platforms for machine learning models. They can be extremely fast, offer great degrees of parallelism and potentially consume far less power than digital processors. So far they have been successfully employed for signal processing using the Reservoir Computing paradigm. In this paper we show that their range of applicability can be greatly extended if we use gradient descent with backpropagation through time on a model of the system to optimize the input encoding of such systems. We perform physical experiments that demonstrate that the obtained input encodings work well in reality, and we show that optimized systems perform significantly better than the common Reservoir Computing approach. The results presented here demonstrate that common gradient descent techniques from machine learning may well be applicable on physical neuro-inspired analog computers.P.B., M.H. and J.D. acknowledge support by the interuniversity attraction pole (IAP) Photonics@be of the Belgian Science Policy Office, the ERC NaResCo Starting grant and the European Union Seventh Framework Programme under grant agreement no. 604102 (Human Brain Project). M.C.S. and I.F. acknowledge support by MINECO (Spain), Comunitat Autónoma de les Illes Balears, FEDER, and the European Commission under Projects TEC2012-36335 (TRIPHOP), and Grups Competitius. M.H. and I.F. acknowledge support from the Universitat de les Illes Balears for an Invited Young Researcher Grant.Peer Reviewe
Spatio-temporal Learning with Arrays of Analog Nanosynapses
Emerging nanodevices such as resistive memories are being considered for
hardware realizations of a variety of artificial neural networks (ANNs),
including highly promising online variants of the learning approaches known as
reservoir computing (RC) and the extreme learning machine (ELM). We propose an
RC/ELM inspired learning system built with nanosynapses that performs both
on-chip projection and regression operations. To address time-dynamic tasks,
the hidden neurons of our system perform spatio-temporal integration and can be
further enhanced with variable sampling or multiple activation windows. We
detail the system and show its use in conjunction with a highly analog
nanosynapse device on a standard task with intrinsic timing dynamics- the TI-46
battery of spoken digits. The system achieves nearly perfect (99%) accuracy at
sufficient hidden layer size, which compares favorably with software results.
In addition, the model is extended to a larger dataset, the MNIST database of
handwritten digits. By translating the database into the time domain and using
variable integration windows, up to 95% classification accuracy is achieved. In
addition to an intrinsically low-power programming style, the proposed
architecture learns very quickly and can easily be converted into a spiking
system with negligible loss in performance- all features that confer
significant energy efficiency.Comment: 6 pages, 3 figures. Presented at 2017 IEEE/ACM Symposium on Nanoscale
architectures (NANOARCH
Universal discrete-time reservoir computers with stochastic inputs and linear readouts using non-homogeneous state-affine systems
A new class of non-homogeneous state-affine systems is introduced for use in
reservoir computing. Sufficient conditions are identified that guarantee first,
that the associated reservoir computers with linear readouts are causal,
time-invariant, and satisfy the fading memory property and second, that a
subset of this class is universal in the category of fading memory filters with
stochastic almost surely uniformly bounded inputs. This means that any
discrete-time filter that satisfies the fading memory property with random
inputs of that type can be uniformly approximated by elements in the
non-homogeneous state-affine family.Comment: 41 page
Trainable hardware for dynamical computing using error backpropagation through physical media
Neural networks are currently implemented on digital Von Neumann machines, which do not fully leverage their intrinsic parallelism. We demonstrate how to use a novel class of reconfigurable dynamical systems for analogue information processing, mitigating this problem. Our generic hardware platform for dynamic, analogue computing consists of a reciprocal linear dynamical system with nonlinear feedback. Thanks to reciprocity, a ubiquitous property of many physical phenomena like the propagation of light and sound, the error backpropagation-a crucial step for tuning such systems towards a specific task-can happen in hardware. This can potentially speed up the optimization process significantly, offering important benefits for the scalability of neuro-inspired hardware. In this paper, we show, using one experimentally validated and one conceptual example, that such systems may provide a straightforward mechanism for constructing highly scalable, fully dynamical analogue computers
A Unified Framework for Reservoir Computing and Extreme Learning Machines based on a Single Time-delayed Neuron
In this paper we present a unified framework for extreme learning machines and reservoir computing (echo state networks), which can be physically implemented using a single nonlinear neuron subject to delayed feedback. The reservoir is built within the delay-line, employing a number of “virtual” neurons. These virtual neurons receive random projections from the input layer containing the information to be processed. One key advantage of this approach is that it can be implemented efficiently in hardware. We show that the reservoir computing implementation, in this case optoelectronic, is also capable to realize extreme learning machines, demonstrating the unified framework for both schemes in software as well as in hardware
- …
