403 research outputs found

    On Cooperative Multiple Access Channels with Delayed CSI at Transmitters

    Full text link
    We consider a cooperative two-user multiaccess channel in which the transmission is controlled by a random state. Both encoders transmit a common message and, one of the encoders also transmits an individual message. We study the capacity region of this communication model for different degrees of availability of the states at the encoders, causally or strictly causally. In the case in which the states are revealed causally to both encoders but not to the decoder we find an explicit characterization of the capacity region in the discrete memoryless case. In the case in which the states are revealed only strictly causally to both encoders, we establish inner and outer bounds on the capacity region. The outer bound is non-trivial, and has a relatively simple form. It has the advantage of incorporating only one auxiliary random variable. We then introduce a class of cooperative multiaccess channels with states known strictly causally at both encoders for which the inner and outer bounds agree; and so we characterize the capacity region for this class. In this class of channels, the state can be obtained as a deterministic function of the channel inputs and output. We also study the model in which the states are revealed, strictly causally, in an asymmetric manner, to only one encoder. Throughout the paper, we discuss a number of examples; and compute the capacity region of some of these examples. The results shed more light on the utility of delayed channel state information for increasing the capacity region of state-dependent cooperative multiaccess channels; and tie with recent progress in this framework.Comment: 54 pages. To appear in IEEE Transactions on Information Theory. arXiv admin note: substantial text overlap with arXiv:1201.327

    Multiaccess Channels with State Known to One Encoder: Another Case of Degraded Message Sets

    Full text link
    We consider a two-user state-dependent multiaccess channel in which only one of the encoders is informed, non-causally, of the channel states. Two independent messages are transmitted: a common message transmitted by both the informed and uninformed encoders, and an individual message transmitted by only the uninformed encoder. We derive inner and outer bounds on the capacity region of this model in the discrete memoryless case as well as the Gaussian case. Further, we show that the bounds for the Gaussian case are tight in some special cases.Comment: 5 pages, Proc. of IEEE International Symposium on Information theory, ISIT 2009, Seoul, Kore

    Lecture Notes on Network Information Theory

    Full text link
    These lecture notes have been converted to a book titled Network Information Theory published recently by Cambridge University Press. This book provides a significantly expanded exposition of the material in the lecture notes as well as problems and bibliographic notes at the end of each chapter. The authors are currently preparing a set of slides based on the book that will be posted in the second half of 2012. More information about the book can be found at http://www.cambridge.org/9781107008731/. The previous (and obsolete) version of the lecture notes can be found at http://arxiv.org/abs/1001.3404v4/

    Degraded Broadcast Diamond Channels with Non-Causal State Information at the Source

    Full text link
    A state-dependent degraded broadcast diamond channel is studied where the source-to-relays cut is modeled with two noiseless, finite-capacity digital links with a degraded broadcasting structure, while the relays-to-destination cut is a general multiple access channel controlled by a random state. It is assumed that the source has non-causal channel state information and the relays have no state information. Under this model, first, the capacity is characterized for the case where the destination has state information, i.e., has access to the state sequence. It is demonstrated that in this case, a joint message and state transmission scheme via binning is optimal. Next, the case where the destination does not have state information, i.e., the case with state information at the source only, is considered. For this scenario, lower and upper bounds on the capacity are derived for the general discrete memoryless model. Achievable rates are then computed for the case in which the relays-to-destination cut is affected by an additive Gaussian state. Numerical results are provided that illuminate the performance advantages that can be accrued by leveraging non-causal state information at the source.Comment: Submitted to IEEE Transactions on Information Theory, Feb. 201

    Relaying Simultaneous Multicast Messages

    Full text link
    The problem of multicasting multiple messages with the help of a relay, which may also have an independent message of its own to multicast, is considered. As a first step to address this general model, referred to as the compound multiple access channel with a relay (cMACr), the capacity region of the multiple access channel with a "cognitive" relay is characterized, including the cases of partial and rate-limited cognition. Achievable rate regions for the cMACr model are then presented based on decode-and-forward (DF) and compress-and-forward (CF) relaying strategies. Moreover, an outer bound is derived for the special case in which each transmitter has a direct link to one of the receivers while the connection to the other receiver is enabled only through the relay terminal. Numerical results for the Gaussian channel are also provided.Comment: This paper was presented at the IEEE Information Theory Workshop, Volos, Greece, June 200

    Wyner-Ziv Type Versus Noisy Network Coding For a State-Dependent MAC

    Full text link
    We consider a two-user state-dependent multiaccess channel in which the states of the channel are known non-causally to one of the encoders and only strictly causally to the other encoder. Both encoders transmit a common message and, in addition, the encoder that knows the states non-causally transmits an individual message. We find explicit characterizations of the capacity region of this communication model in both discrete memoryless and memoryless Gaussian cases. The analysis also reveals optimal ways of exploiting the knowledge of the state only strictly causally at the encoder that sends only the common message when such a knowledge is beneficial. The encoders collaborate to convey to the decoder a lossy version of the state, in addition to transmitting the information messages through a generalized Gel'fand-Pinsker binning. Particularly important in this problem are the questions of 1) optimal ways of performing the state compression and 2) whether or not the compression indices should be decoded uniquely. We show that both compression \`a-la noisy network coding, i.e., with no binning, and compression using Wyner-Ziv binning are optimal. The scheme that uses Wyner-Ziv binning shares elements with Cover and El Gamal original compress-and-forward, but differs from it mainly in that backward decoding is employed instead of forward decoding and the compression indices are not decoded uniquely. Finally, by exploring the properties of our outer bound, we show that, although not required in general, the compression indices can in fact be decoded uniquely essentially without altering the capacity region, but at the expense of larger alphabets sizes for the auxiliary random variables.Comment: Submitted for publication to the 2012 IEEE International Symposium on Information Theory, 5 pages, 1 figur

    Cooperative Strategies for Simultaneous and Broadcast Relay Channels

    Full text link
    Consider the \emph{simultaneous relay channel} (SRC) which consists of a set of relay channels where the source wishes to transmit common and private information to each of the destinations. This problem is recognized as being equivalent to that of sending common and private information to several destinations in presence of helper relays where each channel outcome becomes a branch of the \emph{broadcast relay channel} (BRC). Cooperative schemes and capacity region for a set with two memoryless relay channels are investigated. The proposed coding schemes, based on \emph{Decode-and-Forward} (DF) and \emph{Compress-and-Forward} (CF) must be capable of transmitting information simultaneously to all destinations in such set. Depending on the quality of source-to-relay and relay-to-destination channels, inner bounds on the capacity of the general BRC are derived. Three cases of particular interest are considered: cooperation is based on DF strategy for both users --referred to as DF-DF region--, cooperation is based on CF strategy for both users --referred to as CF-CF region--, and cooperation is based on DF strategy for one destination and CF for the other --referred to as DF-CF region--. These results can be seen as a generalization and hence unification of previous works. An outer-bound on the capacity of the general BRC is also derived. Capacity results are obtained for the specific cases of semi-degraded and degraded Gaussian simultaneous relay channels. Rates are evaluated for Gaussian models where the source must guarantee a minimum amount of information to both users while additional information is sent to each of them.Comment: 32 pages, 7 figures, To appear in IEEE Trans. on Information Theor
    • …
    corecore