25,891 research outputs found

    Graph Estimation From Multi-attribute Data

    Full text link
    Many real world network problems often concern multivariate nodal attributes such as image, textual, and multi-view feature vectors on nodes, rather than simple univariate nodal attributes. The existing graph estimation methods built on Gaussian graphical models and covariance selection algorithms can not handle such data, neither can the theories developed around such methods be directly applied. In this paper, we propose a new principled framework for estimating graphs from multi-attribute data. Instead of estimating the partial correlation as in current literature, our method estimates the partial canonical correlations that naturally accommodate complex nodal features. Computationally, we provide an efficient algorithm which utilizes the multi-attribute structure. Theoretically, we provide sufficient conditions which guarantee consistent graph recovery. Extensive simulation studies demonstrate performance of our method under various conditions. Furthermore, we provide illustrative applications to uncovering gene regulatory networks from gene and protein profiles, and uncovering brain connectivity graph from functional magnetic resonance imaging data.Comment: Extended simulation study. Added an application to a new data se

    Significance Analysis for Pairwise Variable Selection in Classification

    Get PDF
    The goal of this article is to select important variables that can distinguish one class of data from another. A marginal variable selection method ranks the marginal effects for classification of individual variables, and is a useful and efficient approach for variable selection. Our focus here is to consider the bivariate effect, in addition to the marginal effect. In particular, we are interested in those pairs of variables that can lead to accurate classification predictions when they are viewed jointly. To accomplish this, we propose a permutation test called Significance test of Joint Effect (SigJEff). In the absence of joint effect in the data, SigJEff is similar or equivalent to many marginal methods. However, when joint effects exist, our method can significantly boost the performance of variable selection. Such joint effects can help to provide additional, and sometimes dominating, advantage for classification. We illustrate and validate our approach using both simulated example and a real glioblastoma multiforme data set, which provide promising results.Comment: 28 pages, 7 figure

    Block-diagonal covariance selection for high-dimensional Gaussian graphical models

    Get PDF
    Gaussian graphical models are widely utilized to infer and visualize networks of dependencies between continuous variables. However, inferring the graph is difficult when the sample size is small compared to the number of variables. To reduce the number of parameters to estimate in the model, we propose a non-asymptotic model selection procedure supported by strong theoretical guarantees based on an oracle inequality and a minimax lower bound. The covariance matrix of the model is approximated by a block-diagonal matrix. The structure of this matrix is detected by thresholding the sample covariance matrix, where the threshold is selected using the slope heuristic. Based on the block-diagonal structure of the covariance matrix, the estimation problem is divided into several independent problems: subsequently, the network of dependencies between variables is inferred using the graphical lasso algorithm in each block. The performance of the procedure is illustrated on simulated data. An application to a real gene expression dataset with a limited sample size is also presented: the dimension reduction allows attention to be objectively focused on interactions among smaller subsets of genes, leading to a more parsimonious and interpretable modular network.Comment: Accepted in JAS

    Feature Screening via Distance Correlation Learning

    Full text link
    This paper is concerned with screening features in ultrahigh dimensional data analysis, which has become increasingly important in diverse scientific fields. We develop a sure independence screening procedure based on the distance correlation (DC-SIS, for short). The DC-SIS can be implemented as easily as the sure independence screening procedure based on the Pearson correlation (SIS, for short) proposed by Fan and Lv (2008). However, the DC-SIS can significantly improve the SIS. Fan and Lv (2008) established the sure screening property for the SIS based on linear models, but the sure screening property is valid for the DC-SIS under more general settings including linear models. Furthermore, the implementation of the DC-SIS does not require model specification (e.g., linear model or generalized linear model) for responses or predictors. This is a very appealing property in ultrahigh dimensional data analysis. Moreover, the DC-SIS can be used directly to screen grouped predictor variables and for multivariate response variables. We establish the sure screening property for the DC-SIS, and conduct simulations to examine its finite sample performance. Numerical comparison indicates that the DC-SIS performs much better than the SIS in various models. We also illustrate the DC-SIS through a real data example.Comment: 32 pages, 5 tables and 1 figure. Wei Zhong is the corresponding autho
    • …
    corecore