5,315 research outputs found

    Non-centralized Control for Flow-based Distribution Networks: A Game-theoretical Insight

    Get PDF
    This paper solves a data-driven control problem for a flow-based distribution network with two objectives: a resource allocation and a fair distribution of costs. These objectives represent both cooperation and competition directions. It is proposed a solution that combines either a centralized or distributed cooperative game approach using the Shapley value to determine a proper partitioning of the system and a fair communication cost distribution. On the other hand, a decentralized noncooperative game approach computing the Nash equilibrium is used to achieve the control objective of the resource allocation under a non-complete information topology. Furthermore, an invariant-set property is presented and the closed-loop system stability is analyzed for the non cooperative game approach. Another contribution regarding the cooperative game approach is an alternative way to compute the Shapley value for the proposed specific characteristic function. Unlike the classical cooperative-games approach, which has a limited application due to the combinatorial explosion issues, the alternative method allows calculating the Shapley value in polynomial time and hence can be applied to large-scale problems.Generalitat de Catalunya FI 2014Ministerio de Ciencia y Educación DPI2016-76493-C3-3-RMinisterio de Ciencia y Educación DPI2008-05818Proyecto europeo FP7-ICT DYMASO

    Distributed convergence to Nash equilibria in two-network zero-sum games

    Full text link
    This paper considers a class of strategic scenarios in which two networks of agents have opposing objectives with regards to the optimization of a common objective function. In the resulting zero-sum game, individual agents collaborate with neighbors in their respective network and have only partial knowledge of the state of the agents in the other network. For the case when the interaction topology of each network is undirected, we synthesize a distributed saddle-point strategy and establish its convergence to the Nash equilibrium for the class of strictly concave-convex and locally Lipschitz objective functions. We also show that this dynamics does not converge in general if the topologies are directed. This justifies the introduction, in the directed case, of a generalization of this distributed dynamics which we show converges to the Nash equilibrium for the class of strictly concave-convex differentiable functions with locally Lipschitz gradients. The technical approach combines tools from algebraic graph theory, nonsmooth analysis, set-valued dynamical systems, and game theory

    Implications of Selfish Neighbor Selection in Overlay Networks

    Full text link
    In a typical overlay network for routing or content sharing, each node must select a fixed number of immediate overlay neighbors for routing traffic or content queries. A selfish node entering such a network would select neighbors so as to minimize the weighted sum of expected access costs to all its destinations. Previous work on selfish neighbor selection has built intuition with simple models where edges are undirected, access costs are modeled by hop-counts, and nodes have potentially unbounded degrees. However, in practice, important constraints not captured by these models lead to richer games with substantively and fundamentally different outcomes. Our work models neighbor selection as a game involving directed links, constraints on the number of allowed neighbors, and costs reflecting both network latency and node preference. We express a node's "best response" wiring strategy as a k-median problem on asymmetric distance, and use this formulation to obtain pure Nash equilibria. We experimentally examine the properties of such stable wirings on synthetic topologies, as well as on real topologies and maps constructed from PlanetLab and AS-level Internet measurements. Our results indicate that selfish nodes can reap substantial performance benefits when connecting to overlay networks composed of non-selfish nodes. On the other hand, in overlays that are dominated by selfish nodes, the resulting stable wirings are optimized to such great extent that even non-selfish newcomers can extract near-optimal performance through naive wiring strategies.Marie Curie Outgoing International Fellowship of the EU (MOIF-CT-2005-007230); National Science Foundation (CNS Cybertrust 0524477, CNS NeTS 0520166, CNS ITR 0205294, EIA RI 020206

    A Systematic Approach to Constructing Incremental Topology Control Algorithms Using Graph Transformation

    Full text link
    Communication networks form the backbone of our society. Topology control algorithms optimize the topology of such communication networks. Due to the importance of communication networks, a topology control algorithm should guarantee certain required consistency properties (e.g., connectivity of the topology), while achieving desired optimization properties (e.g., a bounded number of neighbors). Real-world topologies are dynamic (e.g., because nodes join, leave, or move within the network), which requires topology control algorithms to operate in an incremental way, i.e., based on the recently introduced modifications of a topology. Visual programming and specification languages are a proven means for specifying the structure as well as consistency and optimization properties of topologies. In this paper, we present a novel methodology, based on a visual graph transformation and graph constraint language, for developing incremental topology control algorithms that are guaranteed to fulfill a set of specified consistency and optimization constraints. More specifically, we model the possible modifications of a topology control algorithm and the environment using graph transformation rules, and we describe consistency and optimization properties using graph constraints. On this basis, we apply and extend a well-known constructive approach to derive refined graph transformation rules that preserve these graph constraints. We apply our methodology to re-engineer an established topology control algorithm, kTC, and evaluate it in a network simulation study to show the practical applicability of our approachComment: This document corresponds to the accepted manuscript of the referenced journal articl

    Optimized network structure and routing metric in wireless multihop ad hoc communication

    Full text link
    Inspired by the Statistical Physics of complex networks, wireless multihop ad hoc communication networks are considered in abstracted form. Since such engineered networks are able to modify their structure via topology control, we search for optimized network structures, which maximize the end-to-end throughput performance. A modified version of betweenness centrality is introduced and shown to be very relevant for the respective modeling. The calculated optimized network structures lead to a significant increase of the end-to-end throughput. The discussion of the resulting structural properties reveals that it will be almost impossible to construct these optimized topologies in a technologically efficient distributive manner. However, the modified betweenness centrality also allows to propose a new routing metric for the end-to-end communication traffic. This approach leads to an even larger increase of throughput capacity and is easily implementable in a technologically relevant manner.Comment: 25 pages, v2: fixed one small typo in the 'authors' fiel

    Distributed workload control for federated service discovery

    Get PDF
    The diffusion of the internet paradigm in each aspect of human life continuously fosters the widespread of new technologies and related services. In the Future Internet scenario, where 5G telecommunication facilities will interact with the internet of things world, analyzing in real time big amounts of data to feed a potential infinite set of services belonging to different administrative domains, the role of a federated service discovery will become crucial. In this paper the authors propose a distributed workload control algorithm to handle efficiently the service discovery requests, with the aim of minimizing the overall latencies experienced by the requesting user agents. The authors propose an algorithm based on the Wardrop equilibrium, which is a gametheoretical concept, applied to the federated service discovery domain. The proposed solution has been implemented and its performance has been assessed adopting different network topologies and metrics. An open source simulation environment has been created allowing other researchers to test the proposed solution

    Collocation Games and Their Application to Distributed Resource Management

    Full text link
    We introduce Collocation Games as the basis of a general framework for modeling, analyzing, and facilitating the interactions between the various stakeholders in distributed systems in general, and in cloud computing environments in particular. Cloud computing enables fixed-capacity (processing, communication, and storage) resources to be offered by infrastructure providers as commodities for sale at a fixed cost in an open marketplace to independent, rational parties (players) interested in setting up their own applications over the Internet. Virtualization technologies enable the partitioning of such fixed-capacity resources so as to allow each player to dynamically acquire appropriate fractions of the resources for unencumbered use. In such a paradigm, the resource management problem reduces to that of partitioning the entire set of applications (players) into subsets, each of which is assigned to fixed-capacity cloud resources. If the infrastructure and the various applications are under a single administrative domain, this partitioning reduces to an optimization problem whose objective is to minimize the overall deployment cost. In a marketplace, in which the infrastructure provider is interested in maximizing its own profit, and in which each player is interested in minimizing its own cost, it should be evident that a global optimization is precisely the wrong framework. Rather, in this paper we use a game-theoretic framework in which the assignment of players to fixed-capacity resources is the outcome of a strategic "Collocation Game". Although we show that determining the existence of an equilibrium for collocation games in general is NP-hard, we present a number of simplified, practically-motivated variants of the collocation game for which we establish convergence to a Nash Equilibrium, and for which we derive convergence and price of anarchy bounds. In addition to these analytical results, we present an experimental evaluation of implementations of some of these variants for cloud infrastructures consisting of a collection of multidimensional resources of homogeneous or heterogeneous capacities. Experimental results using trace-driven simulations and synthetically generated datasets corroborate our analytical results and also illustrate how collocation games offer a feasible distributed resource management alternative for autonomic/self-organizing systems, in which the adoption of a global optimization approach (centralized or distributed) would be neither practical nor justifiable.NSF (CCF-0820138, CSR-0720604, EFRI-0735974, CNS-0524477, CNS-052016, CCR-0635102); Universidad Pontificia Bolivariana; COLCIENCIAS–Instituto Colombiano para el Desarrollo de la Ciencia y la Tecnología "Francisco José de Caldas

    Non-centralized control for flow-based distribution networks: a game-theoretical insight

    Get PDF
    © . This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/This paper solves a data-driven control problem for a flow-based distribution network with two objectives: a resource allocation and a fair distribution of costs. These objectives represent both cooperation and competition directions. It is proposed a solution that combines either a centralized or distributed cooperative game approach using the Shapley value to determine a proper partitioning of the system and a fair communication cost distribution. On the other hand, a decentralized non-cooperative game approach computing the Nash equilibrium is used to achieve the control objective of the resource allocation under a non-complete information topology. Furthermore, an invariant-set property is presented and the closed-loop system stability is analyzed for the non-cooperative game approach. Another contribution regarding the cooperative game approach is an alternative way to compute the Shapley value for the proposed specific characteristic function. Unlike the classical cooperative-games approach, which has a limited application due to the combinatorial explosion issues, the alternative method allows calculating the Shapley value in polynomial time and hence can be applied to large-scale problems.Peer ReviewedPostprint (author's final draft

    MAS-based Distributed Coordinated Control and Optimization in Microgrid and Microgrid Clusters:A Comprehensive Overview

    Get PDF
    • …
    corecore