184 research outputs found

    Using a Deep Learning Model on Images to Obtain a 2D Laser People Detector for a Mobile Robot

    Get PDF
    Recent improvements in deep learning techniques applied to images allow the detection of people with a high success rate. However, other types of sensors, such as laser rangefinders, are still useful due to their wide field of vision and their ability to operate in different environments and lighting conditions. In this work we use an interesting computational intelligence technique such as the deep learning method to detect people in images taken by a mobile robot. The masks of the people in the images are used to automatically label a set of samples formed by 2D laser range data that will allow us to detect the legs of people present in the scene. The samples are geometric characteristics of the clusters built from the laser data. The machine learning algorithms are used to learn a classifier that is capable of detecting people from only 2D laser range data. Our people detector is compared to a state-of-the-art classifier. Our proposal achieves a higher value of F1 in the test set using an unbalanced dataset. To improve accuracy, the final classifier has been generated from a balanced training set. This final classifier has also been evaluated using a test set in which we have obtained very high accuracy values in each class. The contribution of this work is 2-fold. On the one hand, our proposal performs an automatic labeling of the samples so that the dataset can be collected under real operating conditions. On the other hand, the robot can detect people in a wider field of view than if we only used a camera, and in this way can help build more robust behaviors.This work has been supported by the Spanish Government TIN2016- 76515-R Grant, supported with Feder funds

    Detecting and tracking using 2D laser range finders and deep learning

    Get PDF
    Detecting and tracking people using 2D laser rangefinders (LRFs) is challenging due to the features of the human leg motion, high levels of self-occlusion and the existence of objects which are similar to the human legs. Previous approaches use datasets that are manually labelled with support of images of the scenes. We propose a system with a calibrated monocular camera and 2D LRF mounted on a mobile robot in order to generate a dataset of leg patterns through automatic labelling which is valid to achieve a robust and efficient 2D LRF-based people detector and tracker. First, both images and 2D laser data are recorded during the robot navigation in indoor environments. Second, the people detection boxes and keypoints obtained by a deep learning-based object detector are used to locate both people and their legs on the images. The coordinates frame of 2D laser is extrinsically calibrated to the camera coordinates allowing our system to automatically label the leg instances. The automatically labelled dataset is then used to achieve a leg detector by machine learning techniques. To validate the proposal, the leg detector is used to develop a Kalman filter-based people detection and tracking algorithm which is experimentally assessed. The experimentation shows that the proposed system overcomes the Angus Leigh’s detector and tracker which is considered the state of the art on 2D LRF-based people detector and tracker.This work was supported under Grant PID2019-104818RB-I00 funded by MCIN/AEI/10.13039/501100011033 and by ‘‘European Regional Development Fund (ERDF) A way of making Europe’’.Funding for open access charge: Universidad de Granada / CBUA

    Estimating and understanding motion : from diagnostic to robotic surgery

    Get PDF
    Estimating and understanding motion from an image sequence is a central topic in computer vision. The high interest in this topic is because we are living in a world where many events that occur in the environment are dynamic. This makes motion estimation and understanding a natural component and a key factor in a widespread of applications including object recognition , 3D shape reconstruction, autonomous navigation and medica! diagnosis. Particularly, we focus on the medical domain in which understanding the human body for clinical purposes requires retrieving the organs' complex motion patterns, which is in general a hard problem when using only image data. In this thesis, we cope with this problem by posing the question - How to achieve a realistic motion estimation to offer a better clinical understanding? We focus this thesis on answering this question by using a variational formulation as a basis to understand one of the most complex motions in the human's body, the heart motion, through three different applications: (i) cardiac motion estimation for diagnostic, (ii) force estimation and (iii) motion prediction, both for robotic surgery. Firstly, we focus on a central topic in cardiac imaging that is the estimation of the cardiac motion. The main aim is to offer objective and understandable measures to physicians for helping them in the diagnostic of cardiovascular diseases. We employ ultrafast ultrasound data and tools for imaging motion drawn from diverse areas such as low-rank analysis and variational deformation to perform a realistic cardiac motion estimation. The significance is that by taking low-rank data with carefully chosen penalization, synergies in this complex variational problem can be created. We demonstrate how our proposed solution deals with complex deformations through careful numerical experiments using realistic and simulated data. We then move from diagnostic to robotic surgeries where surgeons perform delicate procedures remotely through robotic manipulators without directly interacting with the patients. As a result, they lack force feedback, which is an important primary sense for increasing surgeon-patient transparency and avoiding injuries and high mental workload. To solve this problem, we follow the conservation principies of continuum mechanics in which it is clear that the change in shape of an elastic object is directly proportional to the force applied. Thus, we create a variational framework to acquire the deformation that the tissues undergo due to an applied force. Then, this information is used in a learning system to find the nonlinear relationship between the given data and the applied force. We carried out experiments with in-vivo and ex-vivo data and combined statistical, graphical and perceptual analyses to demonstrate the strength of our solution. Finally, we explore robotic cardiac surgery, which allows carrying out complex procedures including Off-Pump Coronary Artery Bypass Grafting (OPCABG). This procedure avoids the associated complications of using Cardiopulmonary Bypass (CPB) since the heart is not arrested while performing the surgery on a beating heart. Thus, surgeons have to deal with a dynamic target that compromisetheir dexterity and the surgery's precision. To compensate the heart motion, we propase a solution composed of three elements: an energy function to estimate the 3D heart motion, a specular highlight detection strategy and a prediction approach for increasing the robustness of the solution. We conduct evaluation of our solution using phantom and realistic datasets. We conclude the thesis by reporting our findings on these three applications and highlight the dependency between motion estimation and motion understanding at any dynamic event, particularly in clinical scenarios.L’estimació i comprensió del moviment dins d’una seqüència d’imatges és un tema central en la visió per ordinador, el que genera un gran interès perquè vivim en un entorn ple d’esdeveniments dinàmics. Per aquest motiu és considerat com un component natural i factor clau dins d’un ampli ventall d’aplicacions, el qual inclou el reconeixement d’objectes, la reconstrucció de formes tridimensionals, la navegació autònoma i el diagnòstic de malalties. En particular, ens situem en l’àmbit mèdic en el qual la comprensió del cos humà, amb finalitats clíniques, requereix l’obtenció de patrons complexos de moviment dels òrgans. Aquesta és, en general, una tasca difícil quan s’utilitzen només dades de tipus visual. En aquesta tesi afrontem el problema plantejant-nos la pregunta - Com es pot aconseguir una estimació realista del moviment amb l’objectiu d’oferir una millor comprensió clínica? La tesi se centra en la resposta mitjançant l’ús d’una formulació variacional com a base per entendre un dels moviments més complexos del cos humà, el del cor, a través de tres aplicacions: (i) estimació del moviment cardíac per al diagnòstic, (ii) estimació de forces i (iii) predicció del moviment, orientant-se les dues últimes en cirurgia robòtica. En primer lloc, ens centrem en un tema principal en la imatge cardíaca, que és l’estimació del moviment cardíac. L’objectiu principal és oferir als metges mesures objectives i comprensibles per ajudar-los en el diagnòstic de les malalties cardiovasculars. Fem servir dades d’ultrasons ultraràpids i eines per al moviment d’imatges procedents de diverses àrees, com ara l’anàlisi de baix rang i la deformació variacional, per fer una estimació realista del moviment cardíac. La importància rau en que, en prendre les dades de baix rang amb una penalització acurada, es poden crear sinergies en aquest problema variacional complex. Mitjançant acurats experiments numèrics, amb dades realístiques i simulades, hem demostrat com les nostres propostes solucionen deformacions complexes. Després passem del diagnòstic a la cirurgia robòtica, on els cirurgians realitzen procediments delicats remotament, a través de manipuladors robòtics, sense interactuar directament amb els pacients. Com a conseqüència, no tenen la percepció de la força com a resposta, que és un sentit primari important per augmentar la transparència entre el cirurgià i el pacient, per evitar lesions i per reduir la càrrega de treball mental. Resolem aquest problema seguint els principis de conservació de la mecànica del medi continu, en els quals està clar que el canvi en la forma d’un objecte elàstic és directament proporcional a la força aplicada. Per això hem creat un marc variacional que adquireix la deformació que pateixen els teixits per l’aplicació d’una força. Aquesta informació s’utilitza en un sistema d’aprenentatge, per trobar la relació no lineal entre les dades donades i la força aplicada. Hem dut a terme experiments amb dades in-vivo i ex-vivo i hem combinat l’anàlisi estadístic, gràfic i de percepció que demostren la robustesa de la nostra solució. Finalment, explorem la cirurgia cardíaca robòtica, la qual cosa permet realitzar procediments complexos, incloent la cirurgia coronària sense bomba (off-pump coronary artery bypass grafting o OPCAB). Aquest procediment evita les complicacions associades a l’ús de circulació extracorpòria (Cardiopulmonary Bypass o CPB), ja que el cor no s’atura mentre es realitza la cirurgia. Això comporta que els cirurgians han de tractar amb un objectiu dinàmic que compromet la seva destresa i la precisió de la cirurgia. Per compensar el moviment del cor, proposem una solució composta de tres elements: un funcional d’energia per estimar el moviment tridimensional del cor, una estratègia de detecció de les reflexions especulars i una aproximació basada en mètodes de predicció, per tal d’augmentar la robustesa de la solució. L’avaluació de la nostra solució s’ha dut a terme mitjançant conjunts de dades sintètiques i realistes. La tesi conclou informant dels nostres resultats en aquestes tres aplicacions i posant de relleu la dependència entre l’estimació i la comprensió del moviment en qualsevol esdeveniment dinàmic, especialment en escenaris clínics.Postprint (published version

    CBR and MBR techniques: review for an application in the emergencies domain

    Get PDF
    The purpose of this document is to provide an in-depth analysis of current reasoning engine practice and the integration strategies of Case Based Reasoning and Model Based Reasoning that will be used in the design and development of the RIMSAT system. RIMSAT (Remote Intelligent Management Support and Training) is a European Commission funded project designed to: a.. Provide an innovative, 'intelligent', knowledge based solution aimed at improving the quality of critical decisions b.. Enhance the competencies and responsiveness of individuals and organisations involved in highly complex, safety critical incidents - irrespective of their location. In other words, RIMSAT aims to design and implement a decision support system that using Case Base Reasoning as well as Model Base Reasoning technology is applied in the management of emergency situations. This document is part of a deliverable for RIMSAT project, and although it has been done in close contact with the requirements of the project, it provides an overview wide enough for providing a state of the art in integration strategies between CBR and MBR technologies.Postprint (published version

    Recent Trends in Computational Intelligence

    Get PDF
    Traditional models struggle to cope with complexity, noise, and the existence of a changing environment, while Computational Intelligence (CI) offers solutions to complicated problems as well as reverse problems. The main feature of CI is adaptability, spanning the fields of machine learning and computational neuroscience. CI also comprises biologically-inspired technologies such as the intellect of swarm as part of evolutionary computation and encompassing wider areas such as image processing, data collection, and natural language processing. This book aims to discuss the usage of CI for optimal solving of various applications proving its wide reach and relevance. Bounding of optimization methods and data mining strategies make a strong and reliable prediction tool for handling real-life applications

    Marine Vessel Inspection as a Novel Field for Service Robotics: A Contribution to Systems, Control Methods and Semantic Perception Algorithms.

    Get PDF
    This cumulative thesis introduces a novel field for service robotics: the inspection of marine vessels using mobile inspection robots. In this thesis, three scientific contributions are provided and experimentally verified in the field of marine inspection, but are not limited to this type of application. The inspection scenario is merely a golden thread to combine the cumulative scientific results presented in this thesis. The first contribution is an adaptive, proprioceptive control approach for hybrid leg-wheel robots, such as the robot ASGUARD described in this thesis. The robot is able to deal with rough terrain and stairs, due to the control concept introduced in this thesis. The proposed system is a suitable platform to move inside the cargo holds of bulk carriers and to deliver visual data from inside the hold. Additionally, the proposed system also has stair climbing abilities, allowing the system to move between different decks. The robot adapts its gait pattern dynamically based on proprioceptive data received from the joint motors and based on the pitch and tilt angle of the robot's body during locomotion. The second major contribution of the thesis is an independent ship inspection system, consisting of a magnetic wall climbing robot for bulkhead inspection, a particle filter based localization method, and a spatial content management system (SCMS) for spatial inspection data representation and organization. The system described in this work was evaluated in several laboratory experiments and field trials on two different marine vessels in close collaboration with ship surveyors. The third scientific contribution of the thesis is a novel approach to structural classification using semantic perception approaches. By these methods, a structured environment can be semantically annotated, based on the spatial relationships between spatial entities and spatial features. This method was verified in the domain of indoor perception (logistics and household environment), for soil sample classification, and for the classification of the structural parts of a marine vessel. The proposed method allows the description of the structural parts of a cargo hold in order to localize the inspection robot or any detected damage. The algorithms proposed in this thesis are based on unorganized 3D point clouds, generated by a LIDAR within a ship's cargo hold. Two different semantic perception methods are proposed in this thesis. One approach is based on probabilistic constraint networks; the second approach is based on Fuzzy Description Logic and spatial reasoning using a spatial ontology about the environment

    Pattern Recognition

    Get PDF
    A wealth of advanced pattern recognition algorithms are emerging from the interdiscipline between technologies of effective visual features and the human-brain cognition process. Effective visual features are made possible through the rapid developments in appropriate sensor equipments, novel filter designs, and viable information processing architectures. While the understanding of human-brain cognition process broadens the way in which the computer can perform pattern recognition tasks. The present book is intended to collect representative researches around the globe focusing on low-level vision, filter design, features and image descriptors, data mining and analysis, and biologically inspired algorithms. The 27 chapters coved in this book disclose recent advances and new ideas in promoting the techniques, technology and applications of pattern recognition

    Soft computing applied to optimization, computer vision and medicine

    Get PDF
    Artificial intelligence has permeated almost every area of life in modern society, and its significance continues to grow. As a result, in recent years, Soft Computing has emerged as a powerful set of methodologies that propose innovative and robust solutions to a variety of complex problems. Soft Computing methods, because of their broad range of application, have the potential to significantly improve human living conditions. The motivation for the present research emerged from this background and possibility. This research aims to accomplish two main objectives: On the one hand, it endeavors to bridge the gap between Soft Computing techniques and their application to intricate problems. On the other hand, it explores the hypothetical benefits of Soft Computing methodologies as novel effective tools for such problems. This thesis synthesizes the results of extensive research on Soft Computing methods and their applications to optimization, Computer Vision, and medicine. This work is composed of several individual projects, which employ classical and new optimization algorithms. The manuscript presented here intends to provide an overview of the different aspects of Soft Computing methods in order to enable the reader to reach a global understanding of the field. Therefore, this document is assembled as a monograph that summarizes the outcomes of these projects across 12 chapters. The chapters are structured so that they can be read independently. The key focus of this work is the application and design of Soft Computing approaches for solving problems in the following: Block Matching, Pattern Detection, Thresholding, Corner Detection, Template Matching, Circle Detection, Color Segmentation, Leukocyte Detection, and Breast Thermogram Analysis. One of the outcomes presented in this thesis involves the development of two evolutionary approaches for global optimization. These were tested over complex benchmark datasets and showed promising results, thus opening the debate for future applications. Moreover, the applications for Computer Vision and medicine presented in this work have highlighted the utility of different Soft Computing methodologies in the solution of problems in such subjects. A milestone in this area is the translation of the Computer Vision and medical issues into optimization problems. Additionally, this work also strives to provide tools for combating public health issues by expanding the concepts to automated detection and diagnosis aid for pathologies such as Leukemia and breast cancer. The application of Soft Computing techniques in this field has attracted great interest worldwide due to the exponential growth of these diseases. Lastly, the use of Fuzzy Logic, Artificial Neural Networks, and Expert Systems in many everyday domestic appliances, such as washing machines, cookers, and refrigerators is now a reality. Many other industrial and commercial applications of Soft Computing have also been integrated into everyday use, and this is expected to increase within the next decade. Therefore, the research conducted here contributes an important piece for expanding these developments. The applications presented in this work are intended to serve as technological tools that can then be used in the development of new devices
    • …
    corecore