51,256 research outputs found

    Query-dependent metric learning for adaptive, content-based image browsing and retrieval

    Get PDF

    The application of user log for online business environment using content-based Image retrieval system

    Get PDF
    Over the past few years, inter-query learning has gained much attention in the research and development of content-based image retrieval (CBIR) systems. This is largely due to the capability of inter-query approach to enable learning from the retrieval patterns of previous query sessions. However, much of the research works in this field have been focusing on analyzing image retrieval patterns stored in the database. This is not suitable for a dynamic environment such as the World Wide Web (WWW) where images are constantly added or removed. A better alternative is to use an image's visual features to capture the knowledge gained from the previous query sessions. Based on the previous work (Chung et al., 2006), the aim of this paper is to propose a framework of inter-query learning for the WWW-CBIR systems. Such framework can be extremely useful for those online companies whose core business involves providing multimedia content-based services and products to their customers

    Exploring EEG for Object Detection and Retrieval

    Get PDF
    This paper explores the potential for using Brain Computer Interfaces (BCI) as a relevance feedback mechanism in content-based image retrieval. We investigate if it is possible to capture useful EEG signals to detect if relevant objects are present in a dataset of realistic and complex images. We perform several experiments using a rapid serial visual presentation (RSVP) of images at different rates (5Hz and 10Hz) on 8 users with different degrees of familiarization with BCI and the dataset. We then use the feedback from the BCI and mouse-based interfaces to retrieve localized objects in a subset of TRECVid images. We show that it is indeed possible to detect such objects in complex images and, also, that users with previous knowledge on the dataset or experience with the RSVP outperform others. When the users have limited time to annotate the images (100 seconds in our experiments) both interfaces are comparable in performance. Comparing our best users in a retrieval task, we found that EEG-based relevance feedback outperforms mouse-based feedback. The realistic and complex image dataset differentiates our work from previous studies on EEG for image retrieval.Comment: This preprint is the full version of a short paper accepted in the ACM International Conference on Multimedia Retrieval (ICMR) 2015 (Shanghai, China

    CHORUS Deliverable 2.1: State of the Art on Multimedia Search Engines

    Get PDF
    Based on the information provided by European projects and national initiatives related to multimedia search as well as domains experts that participated in the CHORUS Think-thanks and workshops, this document reports on the state of the art related to multimedia content search from, a technical, and socio-economic perspective. The technical perspective includes an up to date view on content based indexing and retrieval technologies, multimedia search in the context of mobile devices and peer-to-peer networks, and an overview of current evaluation and benchmark inititiatives to measure the performance of multimedia search engines. From a socio-economic perspective we inventorize the impact and legal consequences of these technical advances and point out future directions of research

    Ranking algorithms for implicit feedback

    No full text
    This report presents novel algorithms to use eye movements as an implicit relevance feedback in order to improve the performance of the searches. The algorithms are evaluated on "Transport Rank Five" Dataset which were previously collected in Task 8.3. We demonstrated that simple linear combination or tensor product of eye movement and image features can improve the retrieval accuracy

    Vision systems with the human in the loop

    Get PDF
    The emerging cognitive vision paradigm deals with vision systems that apply machine learning and automatic reasoning in order to learn from what they perceive. Cognitive vision systems can rate the relevance and consistency of newly acquired knowledge, they can adapt to their environment and thus will exhibit high robustness. This contribution presents vision systems that aim at flexibility and robustness. One is tailored for content-based image retrieval, the others are cognitive vision systems that constitute prototypes of visual active memories which evaluate, gather, and integrate contextual knowledge for visual analysis. All three systems are designed to interact with human users. After we will have discussed adaptive content-based image retrieval and object and action recognition in an office environment, the issue of assessing cognitive systems will be raised. Experiences from psychologically evaluated human-machine interactions will be reported and the promising potential of psychologically-based usability experiments will be stressed
    corecore