1,280 research outputs found

    Fractional Variational Iteration Method for Fractional Nonlinear Differential Equations

    Get PDF
    Recently, fractional differential equations have been investigated via the famous variational iteration method. However, all the previous works avoid the term of fractional derivative and handle them as a restricted variation. In order to overcome such shortcomings, a fractional variational iteration method is proposed. The Lagrange multipliers can be identified explicitly based on fractional variational theory.Comment: 12 pages, 1 figure

    Extending the D'Alembert Solution to Space-Time Modified Riemann-Liouville Fractional Wave Equations

    Full text link
    In the realm of complexity, it is argued that adequate modeling of TeV-physics demands an approach based on fractal operators and fractional calculus (FC). Non-local theories and memory effects are connected to complexity and the FC. The non-differentiable nature of the microscopic dynamics may be connected with time scales. Based on the Modified Riemann-Liouville definition of fractional derivatives, we have worked out explicit solutions to a fractional wave equation with suitable initial conditions to carefully understand the time evolution of classical fields with a fractional dynamics. First, by considering space-time partial fractional derivatives of the same order in time and space, a generalized fractional D'Alembertian is introduced and by means of a transformation of variables to light-cone coordinates, an explicit analytical solution is obtained. To address the situation of different orders in the time and space derivatives, we adopt different approaches, as it will become clear throughout the paper. Aspects connected to Lorentz symmetry are analyzed in both approaches.Comment: 8 page

    A Fractional Lie Group Method For Anomalous Diffusion Equations

    Full text link
    Lie group method provides an efficient tool to solve a differential equation. This paper suggests a fractional partner for fractional partial differential equations using a fractional characteristic method. A space-time fractional diffusion equation is used as an example to illustrate the effectiveness of the Lie group method.Comment: 5 pages,in pres

    Anomalous g-Factors for Charged Leptons in a Fractional Coarse-Grained Approach

    Get PDF
    In this work, we investigate aspects of the electron, muon and tau gyromagnetic ratios (g-factor) in a fractional coarse-grained scenario, by adopting a Modified Riemann-Liouville (MRL) fractional calculus. We point out the possibility of mapping the experimental values of the specie's g-factors into a theoretical parameter which accounts for fractionality, without computing higher-order QED calculations. We wish to understand whether the value of (g-2) may be traced back to a fractionality of space-time.The justification for the difference between the experimental and the theoretical value g=2 stemming from the Dirac equation is given in the terms of the complexity of the interactions of the charged leptons, considered as pseudo-particles and "dressed" by the interactions and the medium. Stepwise, we build up a fractional Dirac equation from the fractional Weyl equation that, on the other hand, was formulated exclusively in terms of the helicity operator. From the fractional angular momentum algebra, in a coarse-grained scenario, we work out the eigenvalues of the spin operator. Based on the standard electromagnetic current, as an analogy case, we write down a fractional Lagrangian density, with the electromagnetic field minimally coupled to the particular charged lepton. We then study a fractional gauge-like invariance symmetry, formulate the covariant fractional derivative and propose the spinor field transformation. Finally, by taking the non-relativistic regime of the fractional Dirac equation, the fractional Pauli equation is obtained and, from that, an explicit expression for the fractional g-factor comes out that is compared with the experimental CODATA value. Our claim is that the different lepton species must probe space-time by experiencing different fractionalities, once the latter may be associated to the effective interactions of the different families with the medium.Comment: 15 page

    Time-Fractional KdV Equation: Formulation and Solution using Variational Methods

    Full text link
    In this work, the semi-inverse method has been used to derive the Lagrangian of the Korteweg-de Vries (KdV) equation. Then, the time operator of the Lagrangian of the KdV equation has been transformed into fractional domain in terms of the left-Riemann-Liouville fractional differential operator. The variational of the functional of this Lagrangian leads neatly to Euler-Lagrange equation. Via Agrawal's method, one can easily derive the time-fractional KdV equation from this Euler-Lagrange equation. Remarkably, the time-fractional term in the resulting KdV equation is obtained in Riesz fractional derivative in a direct manner. As a second step, the derived time-fractional KdV equation is solved using He's variational-iteration method. The calculations are carried out using initial condition depends on the nonlinear and dispersion coefficients of the KdV equation. We remark that more pronounced effects and deeper insight into the formation and properties of the resulting solitary wave by additionally considering the fractional order derivative beside the nonlinearity and dispersion terms.Comment: The paper has been rewritten, 12 pages, 3 figure

    Weyl and Marchaud derivatives: a forgotten history

    Full text link
    In this paper we recall the contribution given by Hermann Weyl and Andr\'e Marchaud to the notion of fractional derivative. In addition we discuss some relationships between the fractional Laplace operator and Marchaud derivative in the perspective to generalize these objects to different fields of the mathematics.Comment: arXiv admin note: text overlap with arXiv:1705.00953 by other author
    corecore