225 research outputs found

    Research into software executives for space operations support

    Get PDF
    Research concepts pertaining to a software (workstation) executive which will support a distributed processing command and control system characterized by high-performance graphics workstations used as computing nodes are presented. Although a workstation-based distributed processing environment offers many advantages, it also introduces a number of new concerns. In order to solve these problems, allow the environment to function as an integrated system, and present a functional development environment to application programmers, it is necessary to develop an additional layer of software. This 'executive' software integrates the system, provides real-time capabilities, and provides the tools necessary to support the application requirements

    Continuation of research in software for space operations support

    Get PDF
    Software technologies relevant to workstation executives are discussed. Evaluations of problems, potential or otherwise, seen with IBM's Workstation Executive (WEX) 2.5 preliminary design and applicable portions of the 2.5 critical design are presented. Diverse graphics requirements of the Johnson Space Center's Mission Control Center Upgrade (MCCU) are also discussed. The key is to use tools that are portable, compatible with the X window system, and best suited to the requirements of the associated application. This will include a User Interface Language (UIL), an interactive display builder, and a graphic plotting/modeling system. Work sheets are provided for POSIX 1003.4 real-time extensions and the requirements for the Center's automated information systems security plan, referred to as POSIX 1003.6, are discussed

    Making Linux protection mechanisms egalitarian with UserFS

    Get PDF
    Thesis (S.M.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2011.Cataloged from PDF version of thesis.Includes bibliographical references (p. 46-51).UserFS provides egalitarian OS protection mechanisms in Linux. UserFS allows any user-not just the system administrator-to allocate Unix user IDs, to use chroot, and to set up firewall rules in order to confine untrusted code. One key idea in UserFS is representing user IDs as files in a /proc-like file system, thus allowing applications to manage user IDs like any other files, by setting permissions and passing file descriptors over Unix domain sockets. UserFS addresses several challenges in making user IDs egalitarian, including accountability, resource allocation, persistence, and UID reuse. We have ported several applications to take advantage of UserFS; by changing just tens to hundreds of lines of code, we prevented attackers from exploiting application-level vulnerabilities, such as code injection or missing ACL checks in a PHP-based wiki application. Implementing UserFS requires minimal changes to the Linux kernel-a single 3,000-line kernel module-and incurs no performance overhead for most operations, making it practical to deploy on real systems.by Taesoo Kim.S.M

    Ground Systems Development Environment (GSDE) interface requirements analysis

    Get PDF
    A set of procedural and functional requirements are presented for the interface between software development environments and software integration and test systems used for space station ground systems software. The requirements focus on the need for centralized configuration management of software as it is transitioned from development to formal, target based testing. This concludes the GSDE Interface Requirements study. A summary is presented of findings concerning the interface itself, possible interface and prototyping directions for further study, and results of the investigation of the Cronus distributed applications environment

    Toward least-privilege isolation for software

    Get PDF
    Hackers leverage software vulnerabilities to disclose, tamper with, or destroy sensitive data. To protect sensitive data, programmers can adhere to the principle of least-privilege, which entails giving software the minimal privilege it needs to operate, which ensures that sensitive data is only available to software components on a strictly need-to-know basis. Unfortunately, applying this principle in practice is dif- �cult, as current operating systems tend to provide coarse-grained mechanisms for limiting privilege. Thus, most applications today run with greater-than-necessary privileges. We propose sthreads, a set of operating system primitives that allows �ne-grained isolation of software to approximate the least-privilege ideal. sthreads enforce a default-deny model, where software components have no privileges by default, so all privileges must be explicitly granted by the programmer. Experience introducing sthreads into previously monolithic applications|thus, partitioning them|reveals that enumerating privileges for sthreads is di�cult in practice. To ease the introduction of sthreads into existing code, we include Crowbar, a tool that can be used to learn the privileges required by a compartment. We show that only a few changes are necessary to existing code in order to partition applications with sthreads, and that Crowbar can guide the programmer through these changes. We show that applying sthreads to applications successfully narrows the attack surface by reducing the amount of code that can access sensitive data. Finally, we show that applications using sthreads pay only a small performance overhead. We applied sthreads to a range of applications. Most notably, an SSL web server, where we show that sthreads are powerful enough to protect sensitive data even against a strong adversary that can act as a man-in-the-middle in the network, and also exploit most code in the web server; a threat model not addressed to date

    FlexOS: Towards Flexible OS Isolation

    Get PDF
    At design time, modern operating systems are locked in a specific safety and isolation strategy that mixes one or more hardware/software protection mechanisms (e.g. user/kernel separation); revisiting these choices after deployment requires a major refactoring effort. This rigid approach shows its limits given the wide variety of modern applications' safety/performance requirements, when new hardware isolation mechanisms are rolled out, or when existing ones break. We present FlexOS, a novel OS allowing users to easily specialize the safety and isolation strategy of an OS at compilation/deployment time instead of design time. This modular LibOS is composed of fine-grained components that can be isolated via a range of hardware protection mechanisms with various data sharing strategies and additional software hardening. The OS ships with an exploration technique helping the user navigate the vast safety/performance design space it unlocks. We implement a prototype of the system and demonstrate, for several applications (Redis/Nginx/SQLite), FlexOS' vast configuration space as well as the efficiency of the exploration technique: we evaluate 80 FlexOS configurations for Redis and show how that space can be probabilistically subset to the 5 safest ones under a given performance budget. We also show that, under equivalent configurations, FlexOS performs similarly or better than several baselines/competitors.Comment: Artifact Evaluation Repository: https://github.com/project-flexos/asplos22-a

    Making Linux Protection Mechanisms Egalitarian with UserFS

    Get PDF
    URL to paper on conference site: http://www.usenix.org/events/sec10/tech/UserFS provides egalitarian OS protection mechanisms in Linux. UserFS allows any user—not just the system administrator—to allocate Unix user IDs, to use chroot, and to set up firewall rules in order to confine untrusted code. One key idea in UserFS is representing user IDs as files in a /proc-like file system, thus allowing applications to manage user IDs like any other files, by setting permissions and passing file descriptors over Unix domain sockets. UserFS addresses several challenges in making user IDs egalitarian, including accountability, resource allocation, persistence, and UID reuse. We have ported several applications to take advantage of UserFS; by changing just tens to hundreds of lines of code, we prevented attackers from exploiting application-level vulnerabilities, such as code injection or missing ACL checks in a PHP-based wiki application. Implementing UserFS requires minimal changes to the Linux kernel—a single 3,000-line kernel module—and incurs no performance overhead for most operations, making it practical to deploy on real systems.Quanta Computer (Firm)Samsung Scholarship Foundatio
    • …
    corecore