12,489 research outputs found

    Neural Architecture Search: Insights from 1000 Papers

    Full text link
    In the past decade, advances in deep learning have resulted in breakthroughs in a variety of areas, including computer vision, natural language understanding, speech recognition, and reinforcement learning. Specialized, high-performing neural architectures are crucial to the success of deep learning in these areas. Neural architecture search (NAS), the process of automating the design of neural architectures for a given task, is an inevitable next step in automating machine learning and has already outpaced the best human-designed architectures on many tasks. In the past few years, research in NAS has been progressing rapidly, with over 1000 papers released since 2020 (Deng and Lindauer, 2021). In this survey, we provide an organized and comprehensive guide to neural architecture search. We give a taxonomy of search spaces, algorithms, and speedup techniques, and we discuss resources such as benchmarks, best practices, other surveys, and open-source libraries

    Computertomographie-basierte Bestimmung von Aortenklappenkalk und seine Assoziation mit Komplikationen nach interventioneller Aortenklappenimplantation (TAVI)

    Get PDF
    Background: Severe aortic valve calcification (AVC) has generally been recognized as a key factor in the occurrence of adverse events after transcatheter aortic valve implantation (TAVI). To date, however, a consensus on a standardized calcium detection threshold for aortic valve calcium quantification in contrast-enhanced computed tomography angiography (CTA) is still lacking. The present thesis aimed at comparing two different approaches for quantifying AVC in CTA scans based on their predictive power for adverse events and survival after a TAVI procedure.   Methods: The extensive dataset of this study included 198 characteristics for each of the 965 prospectively included patients who had undergone TAVI between November 2012 and December 2019 at the German Heart Center Berlin (DHZB). AVC quantification in CTA scans was performed at a fixed Hounsfield Unit (HU) threshold of 850 HU (HU 850 approach) and at a patient-specific threshold, where the HU threshold was set by multiplying the mean luminal attenuation of the ascending aorta by 2 (+100 % HUAorta approach). The primary endpoint of this study consisted of a combination of post-TAVI outcomes (paravalvular leak ≥ mild, implant-related conduction disturbances, 30-day mortality, post-procedural stroke, annulus rupture, and device migration). The Akaike information criterion was used to select variables for the multivariable regression model. Multivariable analysis was carried out to determine the predictive power of the investigated approaches.   Results: Multivariable analyses showed that a fixed threshold of 850 HU (calcium volume cut-off 146 mm3) was unable to predict the composite clinical endpoint post-TAVI (OR=1.13, 95 % CI 0.87 to 1.48, p=0.35). In contrast, the +100 % HUAorta approach (calcium volume cut-off 1421 mm3) enabled independent prediction of the composite clinical endpoint post-TAVI (OR=2, 95 % CI 1.52 to 2.64, p=9.2x10-7). No significant difference in the Kaplan-Meier survival analysis was observed for either of the approaches.   Conclusions: The patient-specific calcium detection threshold +100 % HUAorta is more predictive of post-TAVI adverse events included in the combined clinical endpoint than the fixed HU 850 approach. For the +100 % HUAorta approach, a calcium volume cut-off of 1421 mm3 of the aortic valve had the highest predictive value.Hintergrund: Ein wichtiger Auslöser von Komplikationen nach einer Transkatheter-Aortenklappen-Implantation (TAVI) sind ausgeprägte Kalkablagerung an der Aortenklappe. Dennoch erfolgte bisher keine Einigung auf ein standardisiertes Messverfahren zur Quantifizierung der Kalklast der Aortenklappe in einer kontrastverstärkten dynamischen computertomographischen Angiographie (CTA). Die vorliegende Dissertation untersucht, inwieweit die Wahl des Analyseverfahrens zur Quantifizierung von Kalkablagerungen in der Aortenklappe die Prognose von Komplikationen und der Überlebensdauer nach einer TAVI beeinflusst.   Methodik: Der Untersuchung liegt ein umfangreicher Datensatz von 965 Patienten mit 198 Merkmalen pro Patienten zugrunde, welche sich zwischen 2012 und 2019 am Deutschen Herzzentrum Berlin einer TAVI unterzogen haben. Die Quantifizierung der Kalkablagerung an der Aortenklappe mittels CTA wurde einerseits mit einem starren Grenzwert von 850 Hounsfield Einheiten (HU) (HU 850 Verfahren) und andererseits anhand eines individuellen Grenzwertes bemessen. Letzterer ergibt sich aus der HU-Dämpfung in dem Lumen der Aorta ascendens multipliziert mit 2 (+100 % HUAorta Verfahren). Der primäre klinische Endpunkt dieser Dissertation besteht aus einem aus sechs Variablen zusammengesetzten klinischen Endpunkt, welcher ungewünschte Ereignisse nach einer TAVI abbildet (paravalvuläre Leckage ≥mild, Herzrhythmusstörungen nach einer TAVI, Tod innerhalb von 30 Tagen, post-TAVI Schlaganfall, Ruptur des Annulus und Prothesendislokation). Mögliche Störfaktoren, die auf das Eintreten der Komplikationen nach TAVI Einfluss haben, wurden durch den Einsatz des Akaike Informationskriterium ermittelt. Um die Vorhersagekraft von Komplikationen nach einer TAVI durch beide Verfahren zu ermitteln, wurde eine multivariate Regressionsanalyse durchgeführt.   Ergebnisse: Die multivariaten logistischen Regressionen zeigen, dass die Messung der Kalkablagerungen anhand der HU 850 Messung (Kalklast Grenzwert von 146 mm3) die Komplikationen und die Überlebensdauer nicht vorhersagen konnten (OR=1.13, 95 % CI 0.87 bis 1.48, p=0.35). Die nach dem +100 % HUAorta Verfahren (Kalklast Grenzwert von 1421 mm3) individualisierte Kalkmessung erwies sich hingegen als sehr aussagekräftig, da hiermit Komplikationen nach einer TAVI signifikant vorhergesagt werden konnten (OR=2, 95 % CI 1.52 bis 2.64, p=9.2x10-7). In Hinblick auf die postoperative Kaplan-Meier Überlebenszeitanalyse kann auch mit dem +100 % HUAorta Verfahren keine Vorhersage getroffen werden.   Fazit: Aus der Dissertation ergibt sich die Empfehlung, die Messung von Kalkablagerungen nach dem +100 % HUAorta Verfahren vorzunehmen, da Komplikationen wesentlich besser und zuverlässiger als nach der gängigen HU 850 Messmethode vorhergesagt werden können. Für das +100 % HUAorta Verfahren lag der optimale Kalklast Grenzwert bei 1421 mm3

    Mathematical models to evaluate the impact of increasing serotype coverage in pneumococcal conjugate vaccines

    Get PDF
    Of over 100 serotypes of Streptococcus pneumoniae, only 7 were included in the first pneumo- coccal conjugate vaccine (PCV). While PCV reduced the disease incidence, in part because of a herd immunity effect, a replacement effect was observed whereby disease was increasingly caused by serotypes not included in the vaccine. Dynamic transmission models can account for these effects to describe post-vaccination scenarios, whereas economic evaluations can enable decision-makers to compare vaccines of increasing valency for implementation. This thesis has four aims. First, to explore the limitations and assumptions of published pneu- mococcal models and the implications for future vaccine formulation and policy. Second, to conduct a trend analysis assembling all the available evidence for serotype replacement in Europe, North America and Australia to characterise invasive pneumococcal disease (IPD) caused by vaccine-type (VT) and non-vaccine-types (NVT) serotypes. The motivation behind this is to assess the patterns of relative abundance in IPD cases pre- and post-vaccination, to examine country-level differences in relation to the vaccines employed over time since introduction, and to assess the growth of the replacement serotypes in comparison with the serotypes targeted by the vaccine. The third aim is to use a Bayesian framework to estimate serotype-specific invasiveness, i.e. the rate of invasive disease given carriage. This is useful for dynamic transmission modelling, as transmission is through carriage but a majority of serotype-specific pneumococcal data lies in active disease surveillance. This is also helpful to address whether serotype replacement reflects serotypes that are more invasive or whether serotypes in a specific location are equally more invasive than in other locations. Finally, the last aim of this thesis is to estimate the epidemiological and economic impact of increas- ing serotype coverage in PCVs using a dynamic transmission model. Together, the results highlight that though there are key parameter uncertainties that merit further exploration, divergence in serotype replacement and inconsistencies in invasiveness on a country-level may make a universal PCV suboptimal.Open Acces

    Development of in-vitro in-silico technologies for modelling and analysis of haematological malignancies

    Get PDF
    Worldwide, haematological malignancies are responsible for roughly 6% of all the cancer-related deaths. Leukaemias are one of the most severe types of cancer, as only about 40% of the patients have an overall survival of 10 years or more. Myelodysplastic Syndrome (MDS), a pre-leukaemic condition, is a blood disorder characterized by the presence of dysplastic, irregular, immature cells, or blasts, in the peripheral blood (PB) and in the bone marrow (BM), as well as multi-lineage cytopenias. We have created a detailed, lineage-specific, high-fidelity in-silico erythroid model that incorporates known biological stimuli (cytokines and hormones) and a competing diseased haematopoietic population, correctly capturing crucial biological checkpoints (EPO-dependent CFU-E differentiation) and replicating the in-vivo erythroid differentiation dynamics. In parallel, we have also proposed a long-term, cytokine-free 3D cell culture system for primary MDS cells, which was firstly optimized using easily-accessible healthy controls. This system enabled long-term (24-day) maintenance in culture with high (>75%) cell viability, promoting spontaneous expansion of erythroid phenotypes (CD71+/CD235a+) without the addition of any exogenous cytokines. Lastly, we have proposed a novel in-vitro in-silico framework using GC-MS metabolomics for the metabolic profiling of BM and PB plasma, aiming not only to discretize between haematological conditions but also to sub-classify MDS patients, potentially based on candidate biomarkers. Unsupervised multivariate statistical analysis showed clear intra- and inter-disease separation of samples of 5 distinct haematological malignancies, demonstrating the potential of this approach for disease characterization. The work herein presented paves the way for the development of in-vitro in-silico technologies to better, characterize, diagnose, model and target haematological malignancies such as MDS and AML.Open Acces

    Omics measures of ageing and disease susceptibility

    Get PDF
    While genomics has been a major field of study for decades due to relatively inexpensive genotyping arrays, the recent advancement of technology has also allowed the measure and study of various “omics”. There are now numerous methods and platforms available that allow high throughput and high dimensional quantification of many types of biological molecules. Traditional genomics and transcriptomics are now joined by proteomics, metabolomics, glycomics, lipidomics and epigenomics. I was lucky to have access to a unique resource in the Orkney Complex Disease Study (ORCADES), a cohort of individuals from the Orkney Islands that are extremely deeply annotated. Approximately 1000 individuals in ORCADES have genomics, proteomics, lipidomics, glycomics, metabolomics, epigenomics, clinical risk factors and disease phenotypes, as well as body composition measurements from whole body scans. In addition to these cross-sectional omics and health related measures, these individuals also have linked electronic health records (EHR) available, allowing the assessment of the effect of these omics measures on incident disease over a ~10-year follow up period. In this thesis I use this phenotype rich resource to investigate the relationship between multiple types of omics measures and both ageing and health outcomes. First, I used the ORCADES data to construct measures of biological age (BA). The idea that there is an underlying rate at which the body deteriorates with age that varies between individuals of the same chronological age, this biological age, would be more indicative of health status, functional capacity and risk of age-related diseases than chronological age. Previous models estimating BA (ageing clocks) have predominantly been built using a single type of omics assay and comparison between different omics ageing clocks has been limited. I performed the most exhaustive comparison of different omics ageing clocks yet, with eleven clocks spanning nine different omics assays. I show that different omics clocks overlap in the information they provide about age, that some omics clocks track more generalised ageing while others track specific disease risk factors and that omics ageing clocks are prognostic of incident disease over and above chronological age. Second, I assessed whether individually or in multivariable models, omics measures are associated with health-related risk factors or prognostic of incident disease over 10 years post-assessment. I show that 2,686 single omics biomarkers are associated with 10 risk factors and 44 subsequent incident diseases. I also show that models built using multiple biomarkers from whole body scans, metabolomics, proteomics and clinical risk factors are prognostic of subsequent diabetes mellitus and that clinical risk factors are prognostic of incident hypertensive disorders, obesity, ischaemic heart disease and Framingham risk score. Third, I investigated the genetic architecture of a subset of the proteomics measures available in ORCADES, specifically 184 cardiovascular-related proteins. Combining genome-wide association (GWAS) summary statistics from ORCADES and 17 other cohorts from the SCALLOP Consortium, giving a maximum sample size of 26,494 individuals, I performed 184 genome-wide association meta-analyses (GWAMAs) on the levels of these proteins circulating in plasma. I discovered 592 independent significant loci associated with the levels of at least one protein. I found that between 8-37% of these significant loci colocalise with known expression quantitative trait loci (eQTL). I also find evidence of causal associations between 11 plasma protein levels and disease susceptibility using Mendelian randomisation, highlighting potential candidate drug targets

    Socio-endocrinology revisited: New tools to tackle old questions

    Get PDF
    Animals’ social environments impact their health and survival, but the proximate links between sociality and fitness are still not fully understood. In this thesis, I develop and apply new approaches to address an outstanding question within this sociality-fitness link: does grooming (a widely studied, positive social interaction) directly affect glucocorticoid concentrations (GCs; a group of steroid hormones indicating physiological stress) in a wild primate? To date, negative, long-term correlations between grooming and GCs have been found, but the logistical difficulties of studying proximate mechanisms in the wild leave knowledge gaps regarding the short-term, causal mechanisms that underpin this relationship. New technologies, such as collar-mounted tri-axial accelerometers, can provide the continuous behavioural data required to match grooming to non-invasive GC measures (Chapter 1). Using Chacma baboons (Papio ursinus) living on the Cape Peninsula, South Africa as a model system, I identify giving and receiving grooming using tri-axial accelerometers and supervised machine learning methods, with high overall accuracy (~80%) (Chapter 2). I then test what socio-ecological variables predict variation in faecal and urinary GCs (fGCs and uGCs) (Chapter 3). Shorter and rainy days are associated with higher fGCs and uGCs, respectively, suggesting that environmental conditions may impose stressors in the form of temporal bottlenecks. Indeed, I find that short days and days with more rain-hours are associated with reduced giving grooming (Chapter 4), and that this reduction is characterised by fewer and shorter grooming bouts. Finally, I test whether grooming predicts GCs, and find that while there is a long-term negative correlation between grooming and GCs, grooming in the short-term, in particular giving grooming, is associated with higher fGCs and uGCs (Chapter 5). I end with a discussion on how the new tools I applied have enabled me to advance our understanding of sociality and stress in primate social systems (Chapter 6)

    The gut microbiome variability of a butterflyfish increases on severely degraded Caribbean reefs.

    Get PDF
    Environmental degradation has the potential to alter key mutualisms that underlie the structure and function of ecological communities. How microbial communities associated with fishes vary across populations and in relation to habitat characteristics remains largely unknown despite their fundamental roles in host nutrition and immunity. We find significant differences in the gut microbiome composition of a facultative coral-feeding butterflyfish (Chaetodon capistratus) across Caribbean reefs that differ markedly in live coral cover (∼0-30%). Fish gut microbiomes were significantly more variable at degraded reefs, a pattern driven by changes in the relative abundance of the most common taxa potentially associated with stress. We also demonstrate that fish gut microbiomes on severely degraded reefs have a lower abundance of Endozoicomonas and a higher diversity of anaerobic fermentative bacteria, which may suggest a less coral dominated diet. The observed shifts in fish gut bacterial communities across the habitat gradient extend to a small set of potentially beneficial host associated bacteria (i.e., the core microbiome) suggesting essential fish-microbiome interactions may be vulnerable to severe coral degradation
    corecore