10,251 research outputs found

    A new fictitious domain method in shape optimization

    Get PDF
    The present paper is concerned with investigating the capability of the smoothness preserving fictitious domain method from [22] to shape optimization problems. We consider the problem of maximizing the Dirichlet energy functional in the class of all simply connected domains with fixed volume, where the state equation involves an elliptic second order differential operator with non-constant coefficients. Numerical experiments in two dimensions validate that we arrive at a fast and robust algorithm for the solution of the considered class of problems. The proposed method keeps applicable for three dimensional shape optimization problems

    Multi-disciplinary optimization of aeroservoelastic systems

    Get PDF
    New methods were developed for efficient aeroservoelastic analysis and optimization. The main target was to develop a method for investigating large structural variations using a single set of modal coordinates. This task was accomplished by basing the structural modal coordinates on normal modes calculated with a set of fictitious masses loading the locations of anticipated structural changes. The following subject areas are covered: (1) modal coordinates for aeroelastic analysis with large local structural variations; and (2) time simulation of flutter with large stiffness changes

    A Parallel High-Order Fictitious Domain Approach for Biomechanical Applications

    Get PDF
    The focus of this contribution is on the parallelization of the Finite Cell Method (FCM) applied for biomechanical simulations of human femur bones. The FCM is a high-order fictitious domain method that combines the simplicity of Cartesian grids with the beneficial properties of hierarchical approximation bases of higher order for an increased accuracy and reliablility of the simulation model. A pre-computation scheme for the numerically expensive parts of the finite cell model is presented that shifts a significant part of the analysis update to a setup phase of the simulation, thus increasing the update rate of linear analyses with time-varying geometry properties to a range that even allows user interactive simulations of high quality. Paralellization of both parts, the pre-computation of the model stiffness and the update phase of the simulation is simplified due to a simple and undeformed cell structure of the computation domain. A shared memory parallelized implementation of the method is presented and its performance is tested for a biomedical application of clinical relevance to demonstrate the applicability of the presented method

    A new method for designing shock-free transonic configurations

    Get PDF
    A method for the design of shock free supercritical airfoils, wings, and three dimensional configurations is described. Results illustrating the procedure in two and three dimensions are given. They include modifications to part of the upper surface of an NACA 64A410 airfoil that will maintain shock free flow over a range of Mach numbers for a fixed lift coefficient, and the modifications required on part of the upper surface of a swept wing with an NACA 64A410 root section to achieve shock free flow. While the results are given for inviscid flow, the same procedures can be employed iteratively with a boundary layer calculation in order to achieve shock free viscous designs. With a shock free pressure field the boundary layer calculation will be reliable and not complicated by the difficulties of shock wave boundary layer interaction
    corecore