77,891 research outputs found

    The Raincore Distributed Session Service for Networking Elements

    Get PDF
    Motivated by the explosive growth of the Internet, we study efficient and fault-tolerant distributed session layer protocols for networking elements. These protocols are designed to enable a network cluster to share the state information necessary for balancing network traffic and computation load among a group of networking elements. In addition, in the presence of failures, they allow network traffic to fail-over from failed networking elements to healthy ones. To maximize the overall network throughput of the networking cluster, we assume a unicast communication medium for these protocols. The Raincore Distributed Session Service is based on a fault-tolerant token protocol, and provides group membership, reliable multicast and mutual exclusion services in a networking environment. We show that this service provides atomic reliable multicast with consistent ordering. We also show that Raincore token protocol consumes less overhead than a broadcast-based protocol in this environment in terms of CPU task-switching. The Raincore technology was transferred to Rainfinity, a startup company that is focusing on software for Internet reliability and performance. Rainwall, Rainfinity’s first product, was developed using the Raincore Distributed Session Service. We present initial performance results of the Rainwall product that validates our design assumptions and goals

    The GRT Planning System: Backward Heuristic Construction in Forward State-Space Planning

    Full text link
    This paper presents GRT, a domain-independent heuristic planning system for STRIPS worlds. GRT solves problems in two phases. In the pre-processing phase, it estimates the distance between each fact and the goals of the problem, in a backward direction. Then, in the search phase, these estimates are used in order to further estimate the distance between each intermediate state and the goals, guiding so the search process in a forward direction and on a best-first basis. The paper presents the benefits from the adoption of opposite directions between the preprocessing and the search phases, discusses some difficulties that arise in the pre-processing phase and introduces techniques to cope with them. Moreover, it presents several methods of improving the efficiency of the heuristic, by enriching the representation and by reducing the size of the problem. Finally, a method of overcoming local optimal states, based on domain axioms, is proposed. According to it, difficult problems are decomposed into easier sub-problems that have to be solved sequentially. The performance results from various domains, including those of the recent planning competitions, show that GRT is among the fastest planners

    Distributed match-making

    Get PDF
    In many distributed computing environments, processes are concurrently executed by nodes in a store- and-forward communication network. Distributed control issues as diverse as name server, mutual exclusion, and replicated data management involve making matches between such processes. We propose a formal problem called distributed match-making as the generic paradigm. Algorithms for distributed match-making are developed and the complexity is investigated in terms of messages and in terms of storage needed. Lower bounds on the complexity of distributed match-making are established. Optimal algorithms, or nearly optimal algorithms, are given for particular network topologies

    Networks of Relations

    Get PDF
    In this paper, we model networks of relational contracts. We explore sanctioning power within these networks under different information technologies depending on the shape of the network. The value of the relational network lies in the enforcement of cooperative agreements which would not be enforceable for the agents without access to the punishment power of other network members. We identify conditions for stability of such networks, conditions for transmission of information about past actions, and conditions under which self-sustainable subnetworks may actually inhibit a stable networkNetworks, Relational Contracts, Collusion, Social Capital

    The complexity of resolving conflicts on MAC

    Full text link
    We consider the fundamental problem of multiple stations competing to transmit on a multiple access channel (MAC). We are given nn stations out of which at most dd are active and intend to transmit a message to other stations using MAC. All stations are assumed to be synchronized according to a time clock. If ll stations node transmit in the same round, then the MAC provides the feedback whether l=0l=0, l=2l=2 (collision occurred) or l=1l=1. When l=1l=1, then a single station is indeed able to successfully transmit a message, which is received by all other nodes. For the above problem the active stations have to schedule their transmissions so that they can singly, transmit their messages on MAC, based only on the feedback received from the MAC in previous round. For the above problem it was shown in [Greenberg, Winograd, {\em A Lower bound on the Time Needed in the Worst Case to Resolve Conflicts Deterministically in Multiple Access Channels}, Journal of ACM 1985] that every deterministic adaptive algorithm should take Ω(d(lgn)/(lgd))\Omega(d (\lg n)/(\lg d)) rounds in the worst case. The fastest known deterministic adaptive algorithm requires O(dlgn)O(d \lg n) rounds. The gap between the upper and lower bound is O(lgd)O(\lg d) round. It is substantial for most values of dd: When d=d = constant and dO(nϵ)d \in O(n^{\epsilon}) (for any constant ϵ1\epsilon \leq 1, the lower bound is respectively O(lgn)O(\lg n) and O(n), which is trivial in both cases. Nevertheless, the above lower bound is interesting indeed when dd \in poly(lgn\lg n). In this work, we present a novel counting argument to prove a tight lower bound of Ω(dlgn)\Omega(d \lg n) rounds for all deterministic, adaptive algorithms, closing this long standing open question.}Comment: Xerox internal report 27th July; 7 page

    EOS: A project to investigate the design and construction of real-time distributed embedded operating systems

    Get PDF
    The EOS project is investigating the design and construction of a family of real-time distributed embedded operating systems for reliable, distributed aerospace applications. Using the real-time programming techniques developed in co-operation with NASA in earlier research, the project staff is building a kernel for a multiple processor networked system. The first six months of the grant included a study of scheduling in an object-oriented system, the design philosophy of the kernel, and the architectural overview of the operating system. In this report, the operating system and kernel concepts are described. An environment for the experiments has been built and several of the key concepts of the system have been prototyped. The kernel and operating system is intended to support future experimental studies in multiprocessing, load-balancing, routing, software fault-tolerance, distributed data base design, and real-time processing
    corecore