34 research outputs found

    Computer-aided detection system for clustered microcalcifications: comparison of performance on full-field digital mammograms and digitized screen-film mammograms

    Full text link
    We have developed a computer-aided detection (CAD) system to detect clustered microcalcifications automatically on full-field digital mammograms (FFDMs) and a CAD system for screen-film mammograms (SFMs). The two systems used the same computer vision algorithms but their false positive (FP) classifiers were trained separately with sample images of each modality. In this study, we compared the performance of the CAD systems for detection of clustered microcalcifications on pairs of FFDM and SFM obtained from the same patient. For case-based performance evaluation, the FFDM CAD system achieved detection sensitivities of 70%, 80% and 90% at an average FP cluster rate of 0.07, 0.16 and 0.63 per image, compared with an average FP cluster rate of 0.15, 0.38 and 2.02 per image for the SFM CAD system. The difference was statistically significant with the alternative free-response receiver operating characteristic (AFROC) analysis. When evaluated on data sets negative for microcalcification clusters, the average FP cluster rates of the FFDM CAD system were 0.04, 0.11 and 0.33 per image at detection sensitivity level of 70%, 80% and 90% compared with an average FP cluster rate of 0.08, 0.14 and 0.50 per image for the SFM CAD system. When evaluated for malignant cases only, the difference of the performance of the two CAD systems was not statistically significant with AFROC analysis.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/58099/2/pmb7_4_008.pd

    Detecting microcalcification clusters in digital mammograms: Study for inclusion into computer aided diagnostic prompting system

    Full text link
    Among signs of breast cancer encountered in digital mammograms radiologists point to microcalcification clusters (MCCs). Their detection is a challenging problem from both medical and image processing point of views. This work presents two concurrent methods for MCC detection, and studies their possible inclusion to a computer aided diagnostic prompting system. One considers Wavelet Domain Hidden Markov Tree (WHMT) for modeling microcalcification edges. The model is used for differentiation between MC and non-MC edges based on the weighted maximum likelihood (WML) values. The classification of objects is carried out using spatial filters. The second method employs SUSAN edge detector in the spatial domain for mammogram segmentation. Classification of objects as calcifications is carried out using another set of spatial filters and Feedforward Neural Network (NN). A same distance filter is employed in both methods to find true clusters. The analysis of two methods is performed on 54 image regions from the mammograms selected randomly from DDSM database, including benign and cancerous cases as well as cases which can be classified as hard cases from both radiologists and the computer perspectives. WHMT/WML is able to detect 98.15% true positive (TP) MCCs under 1.85% of false positives (FP), whereas the SUSAN/NN method achieves 94.44% of TP at the cost of 1.85% for FP. The comparison of these two methods suggests WHMT/WML for the computer aided diagnostic prompting. It also certifies the low false positive rates for both methods, meaning less biopsy tests per patient

    Three-Dimensional Computer-Aided Detection of Microcalcification Clusters in Digital Breast Tomosynthesis

    Get PDF

    Computer-aided detection and diagnosis of breast cancer in 2D and 3D medical imaging through multifractal analysis

    Get PDF
    This Thesis describes the research work performed in the scope of a doctoral research program and presents its conclusions and contributions. The research activities were carried on in the industry with Siemens S.A. Healthcare Sector, in integration with a research team. Siemens S.A. Healthcare Sector is one of the world biggest suppliers of products, services and complete solutions in the medical sector. The company offers a wide selection of diagnostic and therapeutic equipment and information systems. Siemens products for medical imaging and in vivo diagnostics include: ultrasound, computer tomography, mammography, digital breast tomosynthesis, magnetic resonance, equipment to angiography and coronary angiography, nuclear imaging, and many others. Siemens has a vast experience in Healthcare and at the beginning of this project it was strategically interested in solutions to improve the detection of Breast Cancer, to increase its competitiveness in the sector. The company owns several patents related with self-similarity analysis, which formed the background of this Thesis. Furthermore, Siemens intended to explore commercially the computer- aided automatic detection and diagnosis eld for portfolio integration. Therefore, with the high knowledge acquired by University of Beira Interior in this area together with this Thesis, will allow Siemens to apply the most recent scienti c progress in the detection of the breast cancer, and it is foreseeable that together we can develop a new technology with high potential. The project resulted in the submission of two invention disclosures for evaluation in Siemens A.G., two articles published in peer-reviewed journals indexed in ISI Science Citation Index, two other articles submitted in peer-reviewed journals, and several international conference papers. This work on computer-aided-diagnosis in breast led to innovative software and novel processes of research and development, for which the project received the Siemens Innovation Award in 2012. It was very rewarding to carry on such technological and innovative project in a socially sensitive area as Breast Cancer.No cancro da mama a deteção precoce e o diagnóstico correto são de extrema importância na prescrição terapêutica e caz e e ciente, que potencie o aumento da taxa de sobrevivência à doença. A teoria multifractal foi inicialmente introduzida no contexto da análise de sinal e a sua utilidade foi demonstrada na descrição de comportamentos siológicos de bio-sinais e até na deteção e predição de patologias. Nesta Tese, três métodos multifractais foram estendidos para imagens bi-dimensionais (2D) e comparados na deteção de microcalci cações em mamogramas. Um destes métodos foi também adaptado para a classi cação de massas da mama, em cortes transversais 2D obtidos por ressonância magnética (RM) de mama, em grupos de massas provavelmente benignas e com suspeição de malignidade. Um novo método de análise multifractal usando a lacunaridade tri-dimensional (3D) foi proposto para classi cação de massas da mama em imagens volumétricas 3D de RM de mama. A análise multifractal revelou diferenças na complexidade subjacente às localizações das microcalci cações em relação aos tecidos normais, permitindo uma boa exatidão da sua deteção em mamogramas. Adicionalmente, foram extraídas por análise multifractal características dos tecidos que permitiram identi car os casos tipicamente recomendados para biópsia em imagens 2D de RM de mama. A análise multifractal 3D foi e caz na classi cação de lesões mamárias benignas e malignas em imagens 3D de RM de mama. Este método foi mais exato para esta classi cação do que o método 2D ou o método padrão de análise de contraste cinético tumoral. Em conclusão, a análise multifractal fornece informação útil para deteção auxiliada por computador em mamogra a e diagnóstico auxiliado por computador em imagens 2D e 3D de RM de mama, tendo o potencial de complementar a interpretação dos radiologistas

    Medical imaging analysis with artificial neural networks

    Get PDF
    Given that neural networks have been widely reported in the research community of medical imaging, we provide a focused literature survey on recent neural network developments in computer-aided diagnosis, medical image segmentation and edge detection towards visual content analysis, and medical image registration for its pre-processing and post-processing, with the aims of increasing awareness of how neural networks can be applied to these areas and to provide a foundation for further research and practical development. Representative techniques and algorithms are explained in detail to provide inspiring examples illustrating: (i) how a known neural network with fixed structure and training procedure could be applied to resolve a medical imaging problem; (ii) how medical images could be analysed, processed, and characterised by neural networks; and (iii) how neural networks could be expanded further to resolve problems relevant to medical imaging. In the concluding section, a highlight of comparisons among many neural network applications is included to provide a global view on computational intelligence with neural networks in medical imaging

    A framework for breast cancer classification using Multi-DCNNs

    Get PDF
    Background: Deep learning (DL) is the fastest-growing field of machine learning (ML). Deep convolutional neural networks (DCNN) are currently the main tool used for image analysis and classification purposes. There are several DCNN architectures among them AlexNet, GoogleNet, and residual networks (ResNet). Method: This paper presents a new computer-aided diagnosis (CAD) system based on feature extraction and classification using DL techniques to help radiologists to classify breast cancer lesions in mammograms. This is performed by four different experiments to determine the optimum approach. The first one consists of end-to-end pre-trained fine-tuned DCNN networks. In the second one, the deep features of the DCNNs are extracted and fed to a support vector machine (SVM) classifier with different kernel functions. The third experiment performs deep features fusion to demonstrate that combining deep features will enhance the accuracy of the SVM classifiers. Finally, in the fourth experiment, principal component analysis (PCA) is introduced to reduce the large feature vector produced in feature fusion and to decrease the computational cost. The experiments are performed on two datasets (1) the curated breast imaging subset of the digital database for screening mammography (CBIS-DDSM) and (2) the mammographic image analysis society digital mammogram database (MIAS). Results and Conclusions: The accuracy achieved using deep features fusion for both datasets proved to be the highest compared to the state-of-the-art CAD systems. Conversely, when applying the PCA on the feature fusion sets, the accuracy did not improve; however, the computational cost decreased as the execution time decreased
    corecore