8,036 research outputs found

    An EWMA control chart for the multivariate coefficient of variation

    Full text link
    This is the peer reviewed version of the following article: Giner-Bosch, V, Tran, KP, Castagliola, P, Khoo, MBC. An EWMA control chart for the multivariate coefficient of variation. Qual Reliab Engng Int. 2019; 35: 1515-1541, which has been published in final form at https://doi.org/10.1002/qre.2459. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-Archiving.[EN] Monitoring the multivariate coefficient of variation over time is a natural choice when the focus is on stabilising the relative variability of a multivariate process, as is the case in a significant number of real situations in engineering, health sciences, and finance, to name but a few areas. However, not many tools are available to practitioners with this aim. This paper introduces a new control chart to monitor the multivariate coefficient of variation through an exponentially weighted moving average (EWMA) scheme. Concrete methodologies to calculate the limits and evaluate the performance of the chart proposed and determine the optimal values of the chart's parameters are derived based on a theoretical study of the statistic being monitored. Computational experiments reveal that our proposal clearly outperforms existing alternatives, in terms of the average run length to detect an out-of-control state. A numerical example is included to show the efficiency of our chart when operating in practice.Generalitat Valenciana, Grant/Award Number: BEST/2017/033 and GV/2016/004; Ministerio de Economia y Competitividad, Grant/Award Number: MTM2013-45381-PGiner-Bosch, V.; Tran, KP.; Castagliola, P.; Khoo, MBC. (2019). An EWMA control chart for the multivariate coefficient of variation. Quality and Reliability Engineering International. 35(6):1515-1541. https://doi.org/10.1002/qre.2459S15151541356Kang, C. W., Lee, M. S., Seong, Y. J., & Hawkins, D. M. (2007). A Control Chart for the Coefficient of Variation. Journal of Quality Technology, 39(2), 151-158. doi:10.1080/00224065.2007.11917682Amdouni, A., Castagliola, P., Taleb, H., & Celano, G. (2015). Monitoring the coefficient of variation using a variable sample size control chart in short production runs. The International Journal of Advanced Manufacturing Technology, 81(1-4), 1-14. doi:10.1007/s00170-015-7084-4Amdouni, A., Castagliola, P., Taleb, H., & Celano, G. (2017). A variable sampling interval Shewhart control chart for monitoring the coefficient of variation in short production runs. International Journal of Production Research, 55(19), 5521-5536. doi:10.1080/00207543.2017.1285076Yeong, W. C., Khoo, M. B. C., Tham, L. K., Teoh, W. L., & Rahim, M. A. (2017). Monitoring the Coefficient of Variation Using a Variable Sampling Interval EWMA Chart. Journal of Quality Technology, 49(4), 380-401. doi:10.1080/00224065.2017.11918004Teoh, W. L., Khoo, M. B. C., Castagliola, P., Yeong, W. C., & Teh, S. Y. (2017). Run-sum control charts for monitoring the coefficient of variation. European Journal of Operational Research, 257(1), 144-158. doi:10.1016/j.ejor.2016.08.067Sharpe, W. F. (1994). The Sharpe Ratio. The Journal of Portfolio Management, 21(1), 49-58. doi:10.3905/jpm.1994.409501Van Valen, L. (1974). Multivariate structural statistics in natural history. Journal of Theoretical Biology, 45(1), 235-247. doi:10.1016/0022-5193(74)90053-8Albert, A., & Zhang, L. (2010). A novel definition of the multivariate coefficient of variation. Biometrical Journal, 52(5), 667-675. doi:10.1002/bimj.201000030Aerts, S., Haesbroeck, G., & Ruwet, C. (2015). Multivariate coefficients of variation: Comparison and influence functions. Journal of Multivariate Analysis, 142, 183-198. doi:10.1016/j.jmva.2015.08.006Bennett, B. M. (1977). On multivariate coefficients of variation. Statistische Hefte, 18(2), 123-128. doi:10.1007/bf02932744Underhill, L. G. (1990). The coefficient of variation biplot. Journal of Classification, 7(2), 241-256. doi:10.1007/bf01908718Boik, R. J., & Shirvani, A. (2009). Principal components on coefficient of variation matrices. Statistical Methodology, 6(1), 21-46. doi:10.1016/j.stamet.2008.02.006MacGregor, J. F., & Kourti, T. (1995). Statistical process control of multivariate processes. Control Engineering Practice, 3(3), 403-414. doi:10.1016/0967-0661(95)00014-lBersimis, S., Psarakis, S., & Panaretos, J. (2007). Multivariate statistical process control charts: an overview. Quality and Reliability Engineering International, 23(5), 517-543. doi:10.1002/qre.829Yeong, W. C., Khoo, M. B. C., Teoh, W. L., & Castagliola, P. (2015). A Control Chart for the Multivariate Coefficient of Variation. Quality and Reliability Engineering International, 32(3), 1213-1225. doi:10.1002/qre.1828Lim, A. J. X., Khoo, M. B. C., Teoh, W. L., & Haq, A. (2017). Run sum chart for monitoring multivariate coefficient of variation. Computers & Industrial Engineering, 109, 84-95. doi:10.1016/j.cie.2017.04.023Roberts, S. W. (1966). A Comparison of Some Control Chart Procedures. Technometrics, 8(3), 411-430. doi:10.1080/00401706.1966.10490374Roberts, S. W. (1959). Control Chart Tests Based on Geometric Moving Averages. Technometrics, 1(3), 239-250. doi:10.1080/00401706.1959.10489860Lucas, J. M., & Saccucci, M. S. (1990). Exponentially Weighted Moving Average Control Schemes: Properties and Enhancements. Technometrics, 32(1), 1-12. doi:10.1080/00401706.1990.10484583Wijsman, R. A. (1957). Random Orthogonal Transformations and their use in Some Classical Distribution Problems in Multivariate Analysis. The Annals of Mathematical Statistics, 28(2), 415-423. doi:10.1214/aoms/1177706969The general sampling distribution of the multiple correlation coefficient. (1928). Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character, 121(788), 654-673. doi:10.1098/rspa.1928.0224Paolella, M. S. (2007). Intermediate Probability. doi:10.1002/9780470035061WalckC.Handbook on statistical distributions for experimentalists. Tech. Rep. SUFPFY/96‐01 Stockholm   Particle Physics Group Fysikum University of Stockholm;2007. http://inspirehep.net/record/1389910BROOK, D., & EVANS, D. A. (1972). An approach to the probability distribution of cusum run length. Biometrika, 59(3), 539-549. doi:10.1093/biomet/59.3.539Castagliola, P., Celano, G., & Psarakis, S. (2011). Monitoring the Coefficient of Variation Using EWMA Charts. Journal of Quality Technology, 43(3), 249-265. doi:10.1080/00224065.2011.11917861Vining, G. (2009). Technical Advice: Phase I and Phase II Control Charts. Quality Engineering, 21(4), 478-479. doi:10.1080/08982110903185736Scilab Enterprises: Scilab: Free and open source software for numerical computation Version 6.0.0.http://www.scilab.org;2017.Nelder, J. A., & Mead, R. (1965). A Simplex Method for Function Minimization. The Computer Journal, 7(4), 308-313. doi:10.1093/comjnl/7.4.308PAGE, E. S. (1954). CONTINUOUS INSPECTION SCHEMES. Biometrika, 41(1-2), 100-115. doi:10.1093/biomet/41.1-2.100Über die hypergeometrische Reihe . (1836). Journal für die reine und angewandte Mathematik (Crelles Journal), 1836(15), 39-83. doi:10.1515/crll.1836.15.3

    Quantitative infrared thermography resolved leakage current problem in cathodic protection system

    Get PDF
    Leakage current problem can happen in Cathodic Protection (CP) system installation. It could affect the performance of underground facilities such as piping, building structure, and earthing system. Worse can happen is rapid corrosion where disturbance to plant operation plus expensive maintenance cost. Occasionally, if it seems, tracing its root cause could be tedious. The traditional method called line current measurement is still valid effective. It involves isolating one by one of the affected underground structures. The recent methods are Close Interval Potential Survey and Pipeline Current Mapper were better and faster. On top of the mentioned method, there is a need to enhance further by synthesizing with the latest visual methods. Therefore, this paper describes research works on Infrared Thermography Quantitative (IRTQ) method as resolution of leakage current problem in CP system. The scope of study merely focuses on tracing the root cause of leakage current occurring at the CP system lube base oil plant. The results of experiment adherence to the hypothesis drawn. Consequently, res

    Efficient Auxiliary Information Based Exponentially Weighted Moving Coefficient of Variation Control Chart using Hybrid Estimator : An Application to Monitor NPK Fertilizer

    Get PDF
    In this era, manufacturing sectors should ensure the quality of their production process and products. They must reduce the variability that occurs in their operation. Coefficient variation control charts have become important statistical Process Control (SPC) tools for monitoring processes when the process mean linear function with the standard deviation. In recent years, auxiliary information-based-CV control charts using memory type structure have been investigated to enhance the sensitivity of control charts. Auxiliary information is selected when the variable remains stable during the monitoring period. Nevertheless, the AIB statistic is constructed based on lognormal transformation, and no research investigated the memory type CV chart using estimator of AIB-CV from the combination of ratio and regression form called hybrid form. This research proposes a hybrid auxiliary information-based exponentially weighted moving coefficient of variation (Hybrid AIB-EWMCV) control chart for detecting small to moderate shifts in the CV process. The Average Run Length (ARL) simulation shows that increasing the level of correlation and sample sizes enhances the detection ability of the control chart. Also, the proposed chart performs well than existing chart. A real dataset from fertilizer manufacturing is implemented to explain the condition of the process by using a Hybrid AIB-EWMCV control chart

    A Proposed Double Moving Average (DMA) Control Chart [TS156.8. W872 2007 f rb].

    Get PDF
    Teknik carta kawalan telah digunakan secara meluas dalam industri untuk mengawal kualiti proses pengeluaran. Carta kawalan dengan ingatan diperkenalkan sebagai alternatif kepada carta Shewhart untuk pengesanan anjakan tetap proses yang kecil. Control chart techniques have been widely used in industries to monitor the quality of manufacturing processes. Memory control charts are introduced as alternatives to the Shewhart charts for quick detections of small sustaining process shifts

    Life jacket

    Get PDF
    Anyone who cannot swim well should wear life jacket whether they are in the water or around the water. Even those who are can swim well should wear the life jacket when they are doing activity such as swimming, fishing, boating or while doing any water-related activity. Life jacket is a kind of safety jacket that keeping the wearer float the in the water. The wearer may be in the conscious or unconscious condition but by wearing the life jacket we can minimize the risk of drowning because life jacket assist the wearer to keep floating in the water

    Detecting the process\u27 1.5 sigma shift: A quantitative study

    Get PDF
    Process behavior can change with time. In this study an attempt was made to discover whether the Six Sigma™ claim of changes in the process mean stayed within +/- 1.5 sigma units. Several process groups were examined for a particular firm that made metal castings, machined parts, tested major components and assembled these into a vehicle that was a product sold to the customer. As the assembly progressed, deficiencies were identified and recorded. Analyses employed cumulative sum (CUSUM) sequence charts, Autoregressive Integrated Moving Average (ARIMA) time series analyses, minimum mean square error (MMSE) exponentially weighted moving average (EWMA), Shewhart control charts and Analysis of Variance (ANOVA) to identify the shift in the process mean, M/sw, the duration of the shift, λB, and the proper choice of EWMA smoothing coefficient, λEWMA. Kruskal-Wallis analysis of the relationship of these measures to process group (assembly, foundry, heat treatment, machining, shaving, test machine, grinding, turning, warranty and yield) was also performed. The method used was generally applicable for all these processes. The process group and the ARIMA type also influenced the measurement of M/sw , λB , and λEWMA

    An Assorted Design for Joint Monitoring of Process Parameters: An Efficient Approach for Fuel Consumption

    Get PDF
    Due to high fuel consumption, we face the problem of not only the increased cost, but it also affects greenhouse gas emission. This paper presents an assorted approach for monitoring fuel consumption in trucks with the objective to minimize fuel consumption. We propose a control charting structure for joint monitoring of mean and dispersion parameters based on the well-known max approach. The proposed joint assorted chart is evaluated through various performance measures such as average run length, extra quadratic loss, performance comparison index, and relative average run length. The comparison of the proposed chart is carried out with existing control charts, including a combination of X and S, the maximum exponentially weighted moving average (Max-EWMA), combined mixed exponentially weighted moving average-cumulative sum (CMEC), maximum double exponentially weighted average (MDEWMA), and combined mixed double EWMA-CUSUM (CMDEC) charts. The implementation of the proposed chart is presented using real data regarding the monitoring of fuel consumption in trucks. The outcomes revealed that the joint assorted chart is very efficient to detect different kinds of shifts in process behaviors and has superior performance than its competitor charts.Deanship of Scientific Research, King Saud University, King Fahd University of Petroleum and MineralsScopu

    The Multivariate EWMA Model and Health Care Monitoring

    Get PDF
    We introduce the construction of MEWMA (Multivariate exponentially weighted movingaverage) process control in the field of bio surveillance. Such introduction will both improve the reliability of data collected in bio surveillance, better interpretation of the results,improvement in the quality of results and standardization of results when more than two variables are involved. We propose sensitivity ratios as a measure of the effects of the mean shift and dispersion shift in processes under study. Using these sensitivity measures, we designed the optimal exponential weighting factor, which is consistent to results reported in control chart applications. Although ARL (average run length) is the usual measure for control chart performance in multivariate process control, it is by no means the only criterion, however, at the moment it is most widely used criterion for decision making. We suggest addition study of other criteria. For example Medial Run Length, Days to Completion, Direction of Eorrors and others

    A Novel Damage Index for Online Monitoring of RC Slabs under Monotonic Loading by Integration of Process Controlling into Acoustic Emission Technique

    Get PDF
    This study introduces a novel structural health monitoring scheme for cementitious composite slabs with the aid of acoustic emission (AE) technique coupled with statistical process controlling (SPC) method. The adopted framework is an integrated monitoring solution that effectively relates current state (damaged) to reference state of the structure. Evaluation of the latter was made possible using autoregressive model incorporating a set of damage-sensitive feature. In order to provide a benchmark damage indicator, the collected data were processed using control chart analysis. The damage indicators for the former was similarly obtained and then compared with the benchmark to gauge the structural damage. These control charts offer a robust framework meticulously identifying inconsistency in the damage-sensitive feature imposed over the monitoring period. Linear and quadratic projections were also incorporated into SPC model to enhance identification of system transition to other damage states
    corecore