74,739 research outputs found

    Partitioning of energy in highly polydisperse granular gases

    Full text link
    A highly polydisperse granular gas is modeled by a continuous distribution of particle sizes, a, giving rise to a corresponding continuous temperature profile, T(a), which we compute approximately, generalizing previous results for binary or multicomponent mixtures. If the system is driven, it evolves towards a stationary temperature profile, which is discussed for several driving mechanisms in dependence on the variance of the size distribution. For a uniform distribution of sizes, the stationary temperature profile is nonuniform with either hot small particles (constant force driving) or hot large particles (constant velocity or constant energy driving). Polydispersity always gives rise to non-Gaussian velocity distributions. Depending on the driving mechanism the tails can be either overpopulated or underpopulated as compared to the molecular gas. The deviations are mainly due to small particles. In the case of free cooling the decay rate depends continuously on particle size, while all partial temperatures decay according to Haff's law. The analytical results are supported by event driven simulations for a large, but discrete number of species.Comment: 10 pages; 5 figure

    Homogeneous cooling of rough, dissipative particles: Theory and simulations

    Get PDF
    We investigate freely cooling systems of rough spheres in two and three dimensions. Simulations using an event driven algorithm are compared with results of an approximate kinetic theory, based on the assumption of a generalized homogeneous cooling state. For short times tt, translational and rotational energy are found to change linearly with tt. For large times both energies decay like t−2t^{-2} with a ratio independent of time, but not corresponding to equipartition. Good agreement is found between theory and simulations, as long as no clustering instability is observed. System parameters, i.e. density, particle size, and particle mass can be absorbed in a rescaled time, so that the decay of translational and rotational energy is solely determined by normal restitution and surface roughness.Comment: 10 pages, 10 eps-figure

    How river rocks round: resolving the shape-size paradox

    Get PDF
    River-bed sediments display two universal downstream trends: fining, in which particle size decreases; and rounding, where pebble shapes evolve toward ellipsoids. Rounding is known to result from transport-induced abrasion; however many researchers argue that the contribution of abrasion to downstream fining is negligible. This presents a paradox: downstream shape change indicates substantial abrasion, while size change apparently rules it out. Here we use laboratory experiments and numerical modeling to show quantitatively that pebble abrasion is a curvature-driven flow problem. As a consequence, abrasion occurs in two well-separated phases: first, pebble edges rapidly round without any change in axis dimensions until the shape becomes entirely convex; and second, axis dimensions are then slowly reduced while the particle remains convex. Explicit study of pebble shape evolution helps resolve the shape-size paradox by reconciling discrepancies between laboratory and field studies, and enhances our ability to decipher the transport history of a river rock.Comment: 11 pages, 5 figure

    25 Years of Self-Organized Criticality: Numerical Detection Methods

    Get PDF
    The detection and characterization of self-organized criticality (SOC), in both real and simulated data, has undergone many significant revisions over the past 25 years. The explosive advances in the many numerical methods available for detecting, discriminating, and ultimately testing, SOC have played a critical role in developing our understanding of how systems experience and exhibit SOC. In this article, methods of detecting SOC are reviewed; from correlations to complexity to critical quantities. A description of the basic autocorrelation method leads into a detailed analysis of application-oriented methods developed in the last 25 years. In the second half of this manuscript space-based, time-based and spatial-temporal methods are reviewed and the prevalence of power laws in nature is described, with an emphasis on event detection and characterization. The search for numerical methods to clearly and unambiguously detect SOC in data often leads us outside the comfort zone of our own disciplines - the answers to these questions are often obtained by studying the advances made in other fields of study. In addition, numerical detection methods often provide the optimum link between simulations and experiments in scientific research. We seek to explore this boundary where the rubber meets the road, to review this expanding field of research of numerical detection of SOC systems over the past 25 years, and to iterate forwards so as to provide some foresight and guidance into developing breakthroughs in this subject over the next quarter of a century.Comment: Space Science Review series on SO

    The Two Regime method for optimizing stochastic reaction-diffusion simulations

    Get PDF
    The computer simulation of stochastic reaction-diffusion processes in biology is often done using either compartment-based (spatially discretized) simulations or molecular-based (Brownian dynamics) approaches. Compartment-based approaches can yield quick and accurate mesoscopic results but lack the level of detail that is characteristic of the more computationally intensive molecular-based models. Often microscopic detail is only required in a small region but currently the best way to achieve this detail is to use a resource intensive model over the whole domain. We introduce the Two Regime Method (TRM) in which a molecular-based algorithm is used in part of the computational domain and a compartment-based approach is used elsewhere in the computational domain. We apply the TRM to two test problems including a model from developmental biology. We thereby show that the TRM is accurate and subsequently may be used to inspect both mesoscopic and microscopic detail of reaction diffusion simulations according to the demands of the modeller

    Brownian Dynamics Simulation of Polydisperse Hard Spheres

    Full text link
    Standard algorithms for the numerical integration of the Langevin equation require that interactions are slowly varying during to the integration timestep. This in not the case for hard-body systems, where there is no clearcut between the correlation time of the noise and the timescale of the interactions. Starting from a short time approximation of the Smoluchowsky equation, we introduce an algorithm for the simulation of the overdamped Brownian dynamics of polydisperse hard-spheres in absence of hydrodynamics interactions and briefly discuss the extension to the case of external drifts

    Eulerian and modified Lagrangian approaches to multi-dimensional condensation and collection

    Full text link
    Turbulence is argued to play a crucial role in cloud droplet growth. The combined problem of turbulence and cloud droplet growth is numerically challenging. Here, an Eulerian scheme based on the Smoluchowski equation is compared with two Lagrangian superparticle (or su- perdroplet) schemes in the presence of condensation and collection. The growth processes are studied either separately or in combination using either two-dimensional turbulence, a steady flow, or just gravitational acceleration without gas flow. Good agreement between the differ- ent schemes for the time evolution of the size spectra is observed in the presence of gravity or turbulence. Higher moments of the size spectra are found to be a useful tool to characterize the growth of the largest drops through collection. Remarkably, the tails of the size spectra are reasonably well described by a gamma distribution in cases with gravity or turbulence. The Lagrangian schemes are generally found to be superior over the Eulerian one in terms of computational performance. However, it is shown that the use of interpolation schemes such as the cloud-in-cell algorithm is detrimental in connection with superparticle or superdroplet approaches. Furthermore, the use of symmetric over asymmetric collection schemes is shown to reduce the amount of scatter in the results.Comment: 36 pages, 17 figure

    Dust in Brown Dwarfs IV. Dust formation and driven turbulence on mesoscopic scales

    Get PDF
    Dust formation in brown dwarf atmospheres is studied by utilising a model for driven turbulence in the mesoscopic scale regime. We apply a pseudo-spectral method where waves are created and superimposed within a limited wavenumber interval. The turbulent kinetic energy distribution follows the Kolmogoroff spectrum which is assumed to be the most likely value. Such superimposed, stochastic waves may occur in a convectively active environment. They cause nucleation fronts and nucleation events and thereby initiate the dust formation process which continues until all condensible material is consumed. Small disturbances are found to have a large impact on the dust forming system. An initially dust-hostile region, which may originally be optically thin, becomes optically thick in a patchy way showing considerable variations in the dust properties during the formation process. The dust appears in lanes and curls as a result of the interaction with waves, i.e. turbulence, which form larger and larger structures with time. Aiming on a physical understanding of the variability of brown dwarfs, related to structure formation in substellar atmospheres, we work out first necessary criteria for small-scale closure models to be applied in macroscopic simulations of dust forming astrophysical systems.Comment: A&A accepted, 20 page
    • …
    corecore