1,405 research outputs found

    Flow reconstruction and particle characterization from inertial Lagrangian tracks

    Full text link
    This text describes a method to simultaneously reconstruct flow states and determine particle properties from Lagrangian particle tracking (LPT) data. LPT is a popular measurement strategy for fluids in which particles in a flow are illuminated, imaged (typically with multiple cameras), localized in 3D, and then tracked across a series of frames. The resultant "tracks" are spatially sparse, and a reconstruction algorithm is commonly employed to determine dense Eulerian velocity and pressure fields that are consistent with the data as well as the equations governing fluid dynamics. Existing LPT reconstruction algorithms presume that the particles perfectly follow the flow, but this assumption breaks down for inertial particles, which can exhibit lag or ballistic motion and may impart significant momentum to the surrounding fluid. We report an LPT reconstruction strategy that incorporates the transport physics of both the carrier fluid and particle phases, which may be parameterized to account for unknown particle properties like size and density. Our method enables the reconstruction of unsteady flow states and determination of particle properties from LPT data and the coupled governing equations for both phases. We use a neural solver to represent flow states and data-constrained polynomials to represent the tracks (though we note that our technique is compatible with a variety of solvers). Numerical tests are performed to demonstrate the reconstruction of forced isotropic turbulence and a cone-cylinder shock structure from inertial tracks that exhibit significant lag, streamline crossing, and preferential sampling

    .Blood flow patterns estimation in the left ventricle with low-rate 2D and 3D dynamic contrast-enhanced ultrasound

    Get PDF
    a b s t r a c t Background and Objective : Left ventricle (LV) dysfunction always occurs at early heart-failure stages, pro- ducing variations in the LV flow patterns. Cardiac diagnostics may therefore benefit from flow-pattern analysis. Several visualization tools have been proposed that require ultrafast ultrasound acquisitions. However, ultrafast ultrasound is not standard in clinical scanners. Meanwhile techniques that can handle low frame rates are still lacking. As a result, the clinical translation of these techniques remains limited, especially for 3D acquisitions where the volume rates are intrinsically low. Methods : To overcome these limitations, we propose a novel technique for the estimation of LV blood velocity and relative-pressure fields from dynamic contrast-enhanced ultrasound (DCE-US) at low frame rates. Different from other methods, our method is based on the time-delays between time-intensity curves measured at neighbor pixels in the DCE-US loops. Using Navier-Stokes equation, we regularize the obtained velocity fields and derive relative-pressure estimates. Blood flow patterns were characterized with regard to their vorticity, relative-pressure changes (dp/dt) in the LV outflow tract, and viscous energy loss, as these reflect the ejection efficiency. Results : We evaluated the proposed method on 18 patients (9 responders and 9 non-responders) who un- derwent cardiac resynchronization therapy (CRT). After CRT, the responder group evidenced a significant (p < 0.05) increase in vorticity and peak dp/dt, and a non-significant decrease in viscous energy loss. No significant difference was found in the non-responder group. Relative feature variation before and after CRT evidenced a significant difference (p < 0.05) between responders and non-responders for vorticity and peak dp/dt. Finally, the method feasibility is also shown with 3D DCE-US. Conclusions : Using the proposed method, adequate visualization and quantification of blood flow patterns are successfully enabled based on low-rate DCE-US of the LV, facilitating the clinical adoption of the method using standard ultrasound scanners. The clinical value of the method in the context of CRT is also shown

    A Review of Laboratory and Numerical Techniques to Simulate Turbulent Flows

    Get PDF
    Turbulence is still an unsolved issue with enormous implications in several fields, from the turbulent wakes on moving objects to the accumulation of heat in the built environment or the optimization of the performances of heat exchangers or mixers. This review deals with the techniques and trends in turbulent flow simulations, which can be achieved through both laboratory and numerical modeling. As a matter of fact, even if the term “experiment” is commonly employed for laboratory techniques and the term “simulation” for numerical techniques, both the laboratory and numerical techniques try to simulate the real-world turbulent flows performing experiments under controlled conditions. The main target of this paper is to provide an overview of laboratory and numerical techniques to investigate turbulent flows, useful for the research and technical community also involved in the energy field (often non-specialist of turbulent flow investigations), highlighting the advantages and disadvantages of the main techniques, as well as their main fields of application, and also to highlight the trends of the above mentioned methodologies via bibliometric analysis. In this way, the reader can select the proper technique for the specific case of interest and use the quoted bibliography as a more detailed guide. As a consequence of this target, a limitation of this review is that the deepening of the single techniques is not provided. Moreover, even though the experimental and numerical techniques presented in this review are virtually applicable to any type of turbulent flow, given their variety in the very broad field of energy research, the examples presented and discussed in this work will be limited to single-phase subsonic flows of Newtonian fluids. The main result from the bibliometric analysis shows that, as of 2021, a 3:1 ratio of numerical simulations over laboratory experiments emerges from the analysis, which clearly shows a projected dominant trend of the former technique in the field of turbulence. Nonetheless, the main result from the discussion of advantages and disadvantages of both the techniques confirms that each of them has peculiar strengths and weaknesses and that both approaches are still indispensable, with different but complementary purposes

    Detailed Numerical Simulations of Turbulent Premixed Flames at Moderate and High Karlovitz Numbers

    Get PDF
    In generally accepted and applied flamelet combustion models, a turbulent flame is mainly assumed distorted by the large-scale turbulence eddies, whereas small-scale turbulence effects on the local flamelet structures are neglected. However, in a lot of industrial applications rather high turbulent intensities are often imposed, which induce turbulence scales at ranges smaller than the flame thickness. Flame/turbulence interaction appears quite different at these small scales, which is why improvement of the combustion models is required to account for these phenomena. In this thesis, direct numerical simulations (DNS) and large eddy simulations (LES) have been utilized for studies of lean premixed turbulent reactive flows at various turbulent intensities. DNS has been applied for detailed studies of flame-turbulence interaction to investigate flame structures and detailed chemistry effects at high Karlovitz numbers. Intensified convective-diffusive transport within the fine reaction zone layers is observed which is found to significantly alter the chemical pathway with, e.g., intensified heat release rate at low temperatures. Based on these observations a categorization, supplementary to the conventional one, is proposed, which is able to incorporate detailed chemistry effects into the classification of turbulent premixed flames at high Karlovitz numbers. The effect of differential diffusion was found significant, both globally (in terms of the fuel diffusion effect) and locally (in terms of the radical diffusion effect), also in the distributed reaction zone regime. LES was employed for a low swirl stabilized flame utilizing a flamelet combustion model approach. A dynamic modeling approach to incorporate sensitivity to local variations in the subgrid scale flame wrinkling was implemented and validated. The simulations showed high sensitivity of the prediction of turbulent flame fluctuations as well as ambient air entrainment rate into burned gases to inflow conditions and operating conditions. Lower sensitivity was found to domain size and combustion model. Overall the model results showed good agreement with the velocity and scalar validation data in the thin reaction zone regime. In order to analyze the influence of frequency specific coherent structures on the flame dynamics extended dynamic mode decomposition was performed which was able to delineate the effects of the inner and outer shear layer vorticity on the flame stabilization
    • …
    corecore